File size: 2,427 Bytes
cf64284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
"""callback to calculate perplexity as an evaluation metric."""
from typing import Dict, List, Optional
import torch
from torch import Tensor
from tqdm import tqdm
from transformers.modeling_outputs import CausalLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
class Perplexity:
"""
Calculate perplexity as defined in https://huggingface.co/docs/transformers/en/perplexity.
This is a custom variant that doesn't re-tokenize the input or re-load the model.
"""
def __init__(
self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
max_seq_len: int,
stride: int = 512,
) -> None:
self.max_seq_len = max_seq_len
self.stride = stride
self.model = model
self.tokenizer = tokenizer
self.device = model.device
self.name = "perplexity"
def _feature_names(self) -> List[str]:
return ["references"]
def compute(
self,
references: Optional[List[str]] = None,
) -> Dict[str, float]:
"""
Compute perplexity in a fixed length sliding window across the sequence.
"""
assert references is not None, "Missing parameter: references"
references_tokenized = self.tokenizer(
references, return_tensors="pt", padding=True, truncation=True
)
input_ids: Tensor = references_tokenized["input_ids"] # type: ignore
input_ids = input_ids.to(self.device)
sequence_length = input_ids.size(1)
losses = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, sequence_length, self.stride)):
end_loc = min(begin_loc + self.max_seq_len, sequence_length)
trg_len = end_loc - prev_end_loc
input_ids_slice = input_ids[:, begin_loc:end_loc]
labels_slice = input_ids_slice.clone()
labels_slice[:, :-trg_len] = -100
with torch.no_grad():
outputs: CausalLMOutput = self.model(
input_ids=input_ids_slice, labels=labels_slice
)
losses.append(outputs.loss)
prev_end_loc = end_loc
if end_loc == sequence_length:
break
perplexity = torch.exp(torch.stack(losses).mean()).item()
return {
"score": perplexity,
}
|