File size: 8,947 Bytes
132eb74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
"""
module to handle loading model on cpu/meta device for FSDP
"""
import os
import time
from typing import List, Optional, Type, Union
import safetensors
import torch
from accelerate import init_empty_weights
from bitsandbytes.nn import Linear4bit, Params4bit
from fastcore.parallel import parallel
from torch import Tensor, nn
from tqdm import tqdm
from transformers import AutoModelForCausalLM
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, hub
def _replace_linear(
model: nn.Module,
linear_replacement: Type[nn.Module],
quant_config: Union[dict, None] = None,
skip_modules=None,
**kwargs,
):
"""
Replace linear modules with a new Linear module.
Parameters:
model (`torch.nn.Module`):
Input model or `torch.nn.Module` as the function is run recursively.
linear_replacement (`torch.nn.Module`):
The linear module that replaces the old one. Only expects standard arguments.
If other arguments need to be passed, use a lambda.
skip_modules (`List[str]`, *optional*, defaults to `lm_head`):
List of modules names not to convert. Defaults to `lm_head`.
"""
if skip_modules is None:
skip_modules = ["lm_head"]
for name, module in model.named_children():
if len(list(module.children())) > 0:
_replace_linear(
module, linear_replacement, quant_config, skip_modules, **kwargs
)
if isinstance(module, torch.nn.Linear) and name not in skip_modules:
if issubclass(linear_replacement, Linear4bit):
model._modules[ # pylint: disable=protected-access
name
] = linear_replacement(
module.in_features,
module.out_features,
module.bias is not None,
**kwargs,
)
else:
raise ValueError(
f"Unsupported linear replacement: {type(linear_replacement)}"
)
return model
def load_and_quantize(
module: nn.Module,
name: str,
value: Tensor,
device: torch.device = None,
dtype: torch.dtype = None,
skip_names: Optional[List[str]] = None,
to_cpu: bool = False,
to_meta: bool = False,
verbose: bool = False,
quant_method: str = "bnb",
):
"""
Loads `value` tensor into submodule of `module`, optionally skipping `skip_names` and converting to `dtype`.
Quantizes `Params4bit` on `device` then places on "cpu" if to_cpu=True or "meta" if to_meta=True.
"""
if not skip_names:
skip_names = []
def place_on_device(value):
if to_meta:
device = "meta"
elif to_cpu:
device = "cpu"
return value.to(device=device, dtype=dtype)
if any(skip_name in name for skip_name in skip_names):
if verbose:
print(f"Skipping {name} because it is in skip_names")
return
module_key, _, value_key = name.rpartition(".")
try:
submodule = module.get_submodule(module_key)
except AttributeError as exc:
print(f"Module {module_key} not found:\n{exc}")
return
try:
if quant_method == "bnb":
param = submodule.get_parameter(value_key)
if isinstance(param, Params4bit):
# With `sync_module_states=True`, a meta device Params4bit needs to be the same
# shape as the quantized Params4bit with an initialized quant_state. However,
# FSDP only syncs parameters and buffers, so the quant_state isn't copied. This
# workaround quantizes Params4bit to initialize quant_state on all ranks, then
# replaces Params4bit's data with a meta tensor to free memory on non-rank 0.
value = type(param)(
value.to(device=device, dtype=dtype).data, **param.__dict__
).cuda(device)
if to_meta:
value = type(param)(value.data.to("meta"), **value.__dict__)
elif to_cpu:
value = type(param)(value.data.to("cpu"), **value.__dict__)
else:
value = type(param)(place_on_device(value).data)
except AttributeError:
# it's a buffer
value = place_on_device(value)
setattr(submodule, value_key, value)
def n_loading_workers(quant_method: str, param_count: float):
devprops = torch.cuda.get_device_properties(torch.cuda.current_device())
left = int(os.cpu_count() / torch.cuda.device_count())
model_params_b = 70
right = int(
(4 if quant_method == "hqq" else 8)
* (devprops.total_memory / 1e9 / 40)
* (model_params_b / (param_count / 1e9))
)
return min(left, right)
def load_sharded_model(
model_name,
model_config,
cfg,
torch_dtype=torch.bfloat16,
low_memory=True,
):
if (low_memory and cfg.local_rank == 0) or not low_memory:
model = AutoModelForCausalLM.from_pretrained(
model_name,
use_cache=False,
torch_dtype=torch.float32,
_attn_implementation=model_config._attn_implementation, # pylint: disable=protected-access
trust_remote_code=cfg.trust_remote_code,
)
dtype = torch_dtype if not cfg.float32 else None
model.to(dtype=dtype, device="cpu" if low_memory else cfg.local_rank)
else:
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
model_config,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code,
)
return model
def load_sharded_model_quant(
model_name,
model_config,
cfg,
compute_dtype=torch.bfloat16,
quant_storage=torch.float32,
low_memory=True,
verbose=False,
loading_workers=2,
):
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
model_config,
trust_remote_code=cfg.trust_remote_code,
)
if hasattr(model, "transformer"):
model.transformer = _replace_linear(
model.transformer,
Linear4bit,
compute_dtype=compute_dtype,
quant_type="nf4",
quant_storage=quant_storage,
)
else:
# this is the more common case with HF transformers
model.model = _replace_linear(
model.model,
Linear4bit,
compute_dtype=compute_dtype,
quant_type="nf4",
quant_storage=quant_storage,
)
model.is_loaded_in_4bit = True
# Grab the safetensors files that hold the weights
try:
idx = hub.cached_file(model_name, SAFE_WEIGHTS_INDEX_NAME)
files, _ = hub.get_checkpoint_shard_files(model_name, idx)
except OSError:
try:
# This means the model doesn't have a model.safetensors.index.json because it is not sharded
files = []
files.append(hub.cached_file(model_name, SAFE_WEIGHTS_NAME))
except OSError as exc:
# This means the model probably doesn't have a safetensors file
raise exc
# Load in the weights, using our custom load_and_quantize method which quantizes Params4bit on the fly
# and then places each layer on CPU or meta if using low_memory to minimize GPU memory usage
def load_and_quantize_parallel(name_param, model, **kwargs):
name, param = name_param
load_and_quantize(model, name, param, **kwargs)
quant_method = "bnb"
param_count = sum((p.numel() for n, p in model.named_parameters()))
n_workers = (
n_loading_workers(quant_method, param_count)
if loading_workers == -1
else loading_workers
)
if cfg.local_rank == 0 and verbose:
print(f"Using n_workers: {n_workers} for loading")
start = time.time()
for filename in tqdm(
files,
desc="Loading & Quantizing Model Shards",
disable=cfg.local_rank != 0,
position=0,
):
weights = safetensors.torch.load_file(filename)
parallel(
load_and_quantize_parallel,
iter(weights.items()),
n_workers=n_workers,
threadpool=True,
model=model,
dtype=quant_storage,
device=cfg.local_rank,
skip_names=[],
to_cpu=(low_memory and cfg.local_rank == 0),
to_meta=(low_memory and cfg.local_rank != 0),
verbose=verbose,
quant_method=quant_method,
)
if cfg.local_rank == 0 and verbose:
print(f"Loaded model weights in {time.time()-start:.3f} seconds")
# cleanup any extra memory usage from parallel loading
torch.cuda.empty_cache()
return model
|