Last commit not found
""" | |
Patched LlamaAttention to use torch.nn.functional.scaled_dot_product_attention | |
""" | |
import warnings | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
import transformers.models.llama.modeling_llama | |
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv | |
def hijack_llama_sdp_attention(): | |
transformers.models.llama.modeling_llama.LlamaAttention.forward = ( | |
sdp_attention_forward | |
) | |
def sdp_attention_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# pylint: disable=duplicate-code | |
bsz, q_len, _ = hidden_states.size() | |
if not hasattr(self, "pretraining_tp"): | |
self.pretraining_tp = 1 | |
if self.pretraining_tp > 1: | |
key_value_slicing = ( | |
self.num_key_value_heads * self.head_dim | |
) // self.pretraining_tp | |
query_slices = self.q_proj.weight.split( | |
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 | |
) | |
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | |
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | |
query_states = [ | |
F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) | |
] | |
query_states = torch.cat(query_states, dim=-1) | |
key_states = [ | |
F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) | |
] | |
key_states = torch.cat(key_states, dim=-1) | |
value_states = [ | |
F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) | |
] | |
value_states = torch.cat(value_states, dim=-1) | |
else: | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view( | |
bsz, q_len, self.num_heads, self.head_dim | |
).transpose(1, 2) | |
key_states = key_states.view( | |
bsz, q_len, self.num_key_value_heads, self.head_dim | |
).transpose(1, 2) | |
value_states = value_states.view( | |
bsz, q_len, self.num_key_value_heads, self.head_dim | |
).transpose(1, 2) | |
# [bsz, q_len, nh, hd] | |
# [bsz, nh, q_len, hd] | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids | |
) | |
# [bsz, nh, t, hd] | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if output_attentions: | |
warnings.warn( | |
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." | |
) | |
# | |
# sdp-attn start | |
# | |
with torch.backends.cuda.sdp_kernel(): | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
is_causal=False, | |
) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
# | |
# sdp-attn end | |
# | |
if self.pretraining_tp > 1: | |
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) | |
o_proj_slices = self.o_proj.weight.split( | |
self.hidden_size // self.pretraining_tp, dim=1 | |
) | |
attn_output = sum( | |
F.linear(attn_output[i], o_proj_slices[i]) | |
for i in range(self.pretraining_tp) | |
) | |
else: | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |