Last commit not found
"""Module containing the Trainer class and related functions""" | |
import importlib | |
import logging | |
import math | |
import os | |
import sys | |
from contextlib import contextmanager | |
from dataclasses import dataclass, field | |
from functools import partial | |
from pathlib import Path | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.cuda | |
import torch.distributed as dist | |
import transformers | |
from datasets import Dataset, set_caching_enabled | |
from torch.optim.lr_scheduler import OneCycleLR | |
from torch.utils.data import ( | |
DataLoader, | |
DistributedSampler, | |
RandomSampler, | |
SequentialSampler, | |
) | |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments | |
from transformers.trainer_pt_utils import SequentialDistributedSampler | |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler | |
from axolotl.utils.callbacks import ( | |
EvalFirstStepCallback, | |
GPUStatsCallback, | |
SaveBetterTransformerModelCallback, | |
bench_eval_callback_factory, | |
log_prediction_callback_factory, | |
) | |
from axolotl.utils.collators import DataCollatorForSeq2Seq | |
from axolotl.utils.dataloader import MultipackDistributedDataloader | |
from axolotl.utils.distributed import ( | |
is_distributed, | |
is_main_process, | |
reduce_and_broadcast, | |
zero_first, | |
) | |
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup | |
LOG = logging.getLogger("axolotl") | |
def weighted_cross_entropy( | |
logits: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor | |
): | |
# Flatten the logits, labels, and weights tensors | |
logits = logits.view( | |
-1, logits.size(-1) | |
) # logits becomes of shape [batch_size*sequence_length, vocab_size] | |
labels = labels.view(-1) # labels becomes of shape [batch_size*sequence_length] | |
weights = weights.view(-1) # weights becomes of shape [batch_size*sequence_length] | |
# Compute the unweighted cross entropy loss | |
losses = torch.nn.functional.cross_entropy(logits, labels, reduction="none") | |
# Apply the weights to the losses and compute their sum | |
return (weights * losses).sum() | |
def create_weighted_mask(labels: torch.Tensor): | |
# Check if the tensor is 2D. If not, unsqueeze it to make it 2D | |
if len(labels.shape) == 1: | |
labels = labels.unsqueeze(0) | |
weights = torch.zeros_like(labels).float() | |
for i in range(labels.shape[0]): | |
mask = labels[i] != -100 | |
# Create a tensor to track group ids | |
group_ids = torch.zeros_like(labels[i]).int() | |
curr_group_id = 0 | |
for j in range(1, len(labels[i])): | |
if mask[j] and not mask[j - 1]: # switch from masked to unmasked label | |
curr_group_id += 1 # start new group | |
group_ids[j] = ( | |
curr_group_id if mask[j] else 0 | |
) # assign group id if unmasked label | |
# Count only unmasked labels in each group | |
group_counts = torch.bincount(group_ids[mask]) | |
mask_weights = torch.zeros_like(labels[i]).float() | |
mask_weights[mask] = 1.0 / group_counts[group_ids[mask]] | |
weights[i] = mask_weights | |
return weights.squeeze() # squeeze the output to match the input dimension | |
def trainer_weighted_loss(model_output, labels, shift_labels=True): | |
logits = ( | |
model_output["logits"] if isinstance(model_output, dict) else model_output[0] | |
) | |
if shift_labels: | |
logits = logits[..., :-1, :].contiguous() | |
labels = labels[..., 1:].contiguous() | |
weights = create_weighted_mask(labels) | |
return weighted_cross_entropy(logits, labels, weights) | |
class AxolotlTrainingArguments(TrainingArguments): | |
""" | |
Extend the base TrainingArguments for axolotl helpers | |
""" | |
lr_quadratic_warmup: bool = field( | |
default=False, | |
metadata={"help": "Use quadratic warmup for cosine scheduling."}, | |
) | |
sample_packing: bool = field( | |
default=False, | |
metadata={"help": "Use sample packing for efficient training."}, | |
) | |
eval_sample_packing: Optional[bool] = field( | |
default=None, | |
metadata={"help": "Use sample packing for efficient evals."}, | |
) | |
sample_packing_efficiency: float = field( | |
default=1.0, | |
metadata={"help": "Sample packing efficiency for calculating batch length."}, | |
) | |
max_seq_length: int = field( | |
default=2048, | |
metadata={"help": "The maximum sequence length the model can handle"}, | |
) | |
sample_packing_seq_len_multiplier: int = field( | |
default=1, | |
metadata={"help": "the multiplier for the max len for packed sequences"}, | |
) | |
relora_steps: Optional[int] = field( | |
default=None, | |
metadata={"help": "how often to reset for ReLoRA"}, | |
) | |
relora_warmup_steps: Optional[int] = field( | |
default=None, | |
metadata={"help": "how many warmup steps to take after reset for ReLoRA"}, | |
) | |
bench_split: Optional[str] = field( | |
default="eval", metadata={"help": "The benchmark split to run on"} | |
) | |
bench_dataset: Optional[str] = field( | |
default="pharaouk/dharma-1/dharma_1_mini.json", | |
metadata={ | |
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file" | |
}, | |
) | |
do_bench_eval: Optional[bool] = field( | |
default=False, metadata={"help": "Whether to run the Benchmark evaluation."} | |
) | |
max_bench_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset." | |
}, | |
) | |
bench_source_max_len: int = field( | |
default=2048, metadata={"help": "Maximum source sequence length for bench."} | |
) | |
class AxolotlTrainer(Trainer): | |
""" | |
Extend the base Trainer for axolotl helpers | |
""" | |
args = None # type: AxolotlTrainingArguments | |
def __init__(self, *args, bench_data_collator=None, **kwargs): | |
self.bench_data_collator = bench_data_collator | |
super().__init__(*args, **kwargs) | |
def create_scheduler( | |
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None | |
): | |
""" | |
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or | |
passed as an argument. | |
Args: | |
num_training_steps (int): The number of training steps to do. | |
optimizer (torch.optim.Optimizer): The training optimizer | |
""" | |
# fmt: off | |
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition | |
# fmt: on | |
if ( | |
self.args.lr_scheduler_type == "cosine" | |
and self.args.lr_quadratic_warmup is True | |
): | |
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init | |
optimizer, | |
num_warmup_steps=self.args.get_warmup_steps(num_training_steps), | |
num_training_steps=num_training_steps, | |
) | |
else: | |
return super().create_scheduler(num_training_steps, optimizer) | |
return self.lr_scheduler | |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: | |
if self.args.world_size > 1 and self.args.sample_packing: | |
return DistributedSampler( | |
self.train_dataset, | |
num_replicas=self.args.world_size, | |
rank=self.args.process_index, | |
seed=self.args.seed, | |
) | |
return super()._get_train_sampler() | |
def _get_eval_sampler( | |
self, eval_dataset: Dataset | |
) -> Optional[torch.utils.data.Sampler]: | |
if ( | |
self.args.world_size > 1 | |
and self.args.sample_packing | |
and self.args.eval_sample_packing is not False | |
): | |
return SequentialDistributedSampler( | |
eval_dataset, | |
num_replicas=self.args.world_size, | |
rank=self.args.process_index, | |
batch_size=self.args.per_device_eval_batch_size, | |
) | |
return super()._get_eval_sampler(eval_dataset) | |
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]: | |
if self.args.sample_packing: | |
train_sampler = self._get_train_sampler() | |
return self.accelerator.prepare( | |
MultipackDistributedDataloader( | |
self.train_dataset, | |
batch_size=self._train_batch_size, | |
seq_max_length=self.args.max_seq_length, | |
collate_fn=self.data_collator, | |
sampler=train_sampler, | |
packing_efficiency_estimate=self.args.sample_packing_efficiency, | |
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier, | |
device_count=int(os.environ.get("WORLD_SIZE", 1)), | |
) | |
) | |
return super().get_train_dataloader() | |
def get_eval_dataloader( | |
self, eval_dataset: Optional[Dataset] = None | |
) -> Union[DataLoader, MultipackDistributedDataloader]: | |
if self.args.sample_packing and self.args.eval_sample_packing is not False: | |
eval_dataset = ( | |
eval_dataset if eval_dataset is not None else self.eval_dataset | |
) | |
eval_sampler = self._get_eval_sampler(eval_dataset) | |
return self.accelerator.prepare( | |
MultipackDistributedDataloader( | |
eval_dataset, | |
batch_size=self.args.eval_batch_size, | |
seq_max_length=self.args.max_seq_length, | |
collate_fn=self.data_collator, | |
sampler=eval_sampler, | |
packing_efficiency_estimate=self.args.sample_packing_efficiency, | |
sample_packing_seq_len_multiplier=self.args.eval_batch_size, | |
device_count=int(os.environ.get("WORLD_SIZE", 1)), | |
) | |
) | |
return super().get_eval_dataloader(eval_dataset) | |
def _get_bench_sampler( | |
self, bench_dataset: Dataset | |
) -> Optional[torch.utils.data.Sampler]: | |
if self.args.world_size <= 1: | |
return SequentialSampler(bench_dataset) | |
return None | |
def get_bench_dataloader( | |
self, | |
bench_dataset: Dataset, | |
) -> Union[DataLoader, MultipackDistributedDataloader]: | |
dataloader_params = { | |
"batch_size": self.args.eval_batch_size, | |
"collate_fn": self.bench_data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
} | |
if not isinstance(bench_dataset, torch.utils.data.IterableDataset): | |
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset) | |
dataloader_params["drop_last"] = self.args.dataloader_drop_last | |
return DataLoader(bench_dataset, **dataloader_params) | |
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params)) | |
def compute_loss(self, model, inputs, return_outputs=False): | |
# use one's weighted cross entropy loss calc | |
# if self.args.sample_packing: | |
# labels = inputs.pop("labels") | |
# outputs = model(**inputs) | |
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True) | |
# return (loss, outputs) if return_outputs else loss | |
return super().compute_loss(model, inputs, return_outputs=return_outputs) | |
class OneCycleLRSchedulerTrainer(AxolotlTrainer): | |
""" | |
Trainer subclass that uses the OneCycleLR scheduler | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.lr_scheduler = None | |
def create_scheduler( | |
self, | |
num_training_steps: int, | |
optimizer: Optional[torch.optim.Optimizer] = None, | |
): | |
optimizer = self.optimizer if optimizer is None else optimizer | |
num_warmup_steps = self.args.get_warmup_steps(num_training_steps) | |
pct_start = num_warmup_steps / num_training_steps | |
self.lr_scheduler = OneCycleLR( | |
optimizer, | |
max_lr=self.args.learning_rate, | |
total_steps=num_training_steps, | |
pct_start=pct_start, | |
div_factor=6, | |
) | |
return self.lr_scheduler | |
class ReLoRATrainer(AxolotlTrainer): | |
""" | |
Trainer subclass that uses the OneCycleLR scheduler | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.lr_scheduler = None | |
def create_scheduler( | |
self, | |
num_training_steps: int, | |
optimizer: Optional[torch.optim.Optimizer] = None, | |
): | |
optimizer = self.optimizer if optimizer is None else optimizer | |
lr_scheduler = super().create_scheduler(num_training_steps, optimizer) | |
if self.args.relora_steps: | |
warmup_steps = ( | |
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10 | |
) | |
self.lr_scheduler = ReLoRAScheduler( | |
optimizer, | |
lr_scheduler, | |
self.args.relora_steps, | |
warmup_steps, | |
) | |
else: | |
self.lr_scheduler = lr_scheduler | |
return self.lr_scheduler | |
def add_position_ids(sample): | |
sample_len = len(sample["input_ids"]) | |
sample["position_ids"] = torch.arange(len(sample["input_ids"])) | |
sample["length"] = sample_len | |
return sample | |
def add_length(sample): | |
sample["length"] = len(sample["input_ids"]) | |
return sample | |
def drop_long_seq(sample, sequence_len=2048): | |
return len(sample["input_ids"]) <= sequence_len and len(sample["input_ids"]) > 0 | |
def disable_datasets_caching(): | |
try: | |
set_caching_enabled(False) | |
yield | |
finally: | |
set_caching_enabled(True) | |
def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer): | |
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len) | |
with zero_first(is_main_process()): | |
train_dataset = train_dataset.filter(drop_long, num_proc=os.cpu_count()) | |
if eval_dataset: | |
eval_dataset = eval_dataset.filter(drop_long, num_proc=os.cpu_count()) | |
if cfg.group_by_length: | |
train_dataset = train_dataset.map(add_length, num_proc=os.cpu_count()) | |
if cfg.sample_packing: | |
train_dataset = train_dataset.map(add_position_ids, num_proc=os.cpu_count()) | |
if cfg.eval_sample_packing is not False: | |
if eval_dataset: | |
eval_dataset = eval_dataset.map( | |
add_position_ids, num_proc=os.cpu_count() | |
) | |
# Phi doesn't want the attention_mask feature when training | |
if "CodeGenTokenizer" in tokenizer.__class__.__name__: | |
train_dataset = train_dataset.remove_columns("attention_mask") | |
if eval_dataset: | |
eval_dataset = eval_dataset.remove_columns("attention_mask") | |
return train_dataset, eval_dataset | |
def calculate_total_num_steps(cfg, train_dataset, tokenizer): | |
if cfg.sample_packing: | |
# we have to drop anything longer then sequence len otherwise | |
# flash attention with position ids fails | |
if not cfg.total_num_tokens: | |
LOG.info("calculating total_num_tokens") | |
total_num_tokens = np.sum( | |
train_dataset.data.column("input_ids") | |
.to_pandas() | |
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda | |
.values | |
) | |
LOG.info(f"total_num_tokens: {total_num_tokens}") | |
cfg.total_num_tokens = total_num_tokens | |
if not cfg.total_supervised_tokens: | |
total_supervised_tokens = ( | |
train_dataset.data.column("labels") | |
.to_pandas() | |
.apply(lambda x: np.sum(np.array(x) != -100)) | |
.sum() | |
) | |
LOG.info(f"`total_supervised_tokens: {total_supervised_tokens}`") | |
cfg.total_supervised_tokens = total_supervised_tokens | |
if cfg.sample_packing_eff_est: | |
total_num_steps = ( | |
# match count to len est in dataloader | |
( | |
math.floor( | |
0.99 | |
* cfg.total_num_tokens | |
/ cfg.sample_packing_eff_est | |
/ cfg.sequence_len | |
// cfg.batch_size | |
// int(os.environ.get("WORLD_SIZE", 1)) | |
) | |
- 1 | |
) | |
* cfg.num_epochs | |
) | |
LOG.info( | |
f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}" | |
) | |
else: | |
if cfg.world_size > 1 and is_distributed(): | |
sampler = DistributedSampler( | |
train_dataset, | |
num_replicas=cfg.world_size, | |
rank=dist.get_rank(), | |
seed=cfg.seed or 42, | |
) | |
else: | |
sampler = RandomSampler(train_dataset) | |
data_loader = MultipackDistributedDataloader( | |
train_dataset, | |
batch_size=cfg.micro_batch_size, | |
seq_max_length=cfg.max_packed_sequence_len or cfg.sequence_len, | |
collate_fn=DataCollatorForSeq2Seq( | |
tokenizer, | |
return_tensors="pt", | |
padding="longest", | |
), | |
sampler=sampler, | |
packing_efficiency_estimate=cfg.sample_packing_eff_est, | |
sample_packing_seq_len_multiplier=cfg.micro_batch_size, | |
device_count=int(os.environ.get("WORLD_SIZE", 1)), | |
) | |
data_loader_len = data_loader.len_w_stats() | |
actual_eff = data_loader.efficiency() | |
LOG.info(f"data_loader_len: {data_loader_len}") | |
# FIXME: is there a bug here somewhere? the total num steps depends | |
# on the agreed on value for sample_packing_eff_est | |
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs)) | |
def calc_sample_packing_eff_est(estimates: List[float]): | |
LOG.info(f"sample_packing_eff_est across ranks: {repr(estimates)}") | |
return max(estimates) | |
sample_packing_actual_eff_all = reduce_and_broadcast( | |
lambda: actual_eff, | |
calc_sample_packing_eff_est, | |
) | |
sample_packing_eff_est = ( | |
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0 | |
) | |
cfg.sample_packing_eff_est = sample_packing_eff_est | |
LOG.info(f"sample_packing_eff_est: {cfg.sample_packing_eff_est}") | |
else: | |
total_num_steps = int( | |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) | |
) | |
LOG.info(f"total_num_steps: {total_num_steps}") | |
return total_num_steps | |
def setup_fsdp_envs(cfg): | |
os.environ["ACCELERATE_USE_FSDP"] = "true" | |
if cfg.fsdp_config.fsdp_offload_params: | |
os.environ["FSDP_OFFLOAD_PARAMS"] = "true" | |
if cfg.fsdp_config.fsdp_sync_module_states: | |
os.environ["FSDP_SYNC_MODULE_STATES"] = "true" | |
if cfg.fsdp_config.fsdp_state_dict_type: | |
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type | |
if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap: | |
os.environ[ | |
"FSDP_TRANSFORMER_CLS_TO_WRAP" | |
] = cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap | |
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps): | |
if cfg.fsdp: | |
setup_fsdp_envs(cfg) | |
elif cfg.deepspeed: | |
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true" | |
warmup_steps = ( | |
cfg.warmup_steps | |
if cfg.warmup_steps is not None | |
else min(int(0.03 * total_num_steps), 100) | |
) | |
logging_steps = ( | |
cfg.logging_steps | |
if cfg.logging_steps is not None | |
else max(min(int(0.005 * total_num_steps), 10), 1) | |
) | |
training_arguments_kwargs = {} | |
if cfg.bf16 == "full": | |
training_arguments_kwargs["bf16_full_eval"] = True | |
else: | |
training_arguments_kwargs["bf16"] = cfg.bf16 | |
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False | |
training_arguments_kwargs["tf32"] = cfg.tf32 | |
training_arguments_kwargs["warmup_steps"] = warmup_steps | |
training_arguments_kwargs["logging_steps"] = logging_steps | |
if cfg.seed: | |
training_arguments_kwargs["seed"] = cfg.seed | |
if cfg.gradient_checkpointing: | |
training_arguments_kwargs["gradient_checkpointing"] = cfg.gradient_checkpointing | |
if cfg.fsdp: | |
training_arguments_kwargs["fsdp"] = cfg.fsdp | |
if cfg.fsdp_config: | |
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config) | |
# deepspeed | |
if cfg.deepspeed: | |
training_arguments_kwargs["deepspeed"] = cfg.deepspeed | |
if cfg.lr_quadratic_warmup is not None: | |
training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup | |
if cfg.adam_beta1: | |
training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1 | |
if cfg.adam_beta2: | |
training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2 | |
if cfg.adam_epsilon: | |
training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon | |
if cfg.max_grad_norm: | |
training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm | |
if cfg.hub_model_id: | |
training_arguments_kwargs["hub_model_id"] = cfg.hub_model_id | |
training_arguments_kwargs["push_to_hub"] = True | |
training_arguments_kwargs["hub_private_repo"] = True | |
if cfg.hub_strategy: | |
training_arguments_kwargs["hub_strategy"] = cfg.hub_strategy | |
if cfg.save_safetensors: | |
training_arguments_kwargs["save_safetensors"] = cfg.save_safetensors | |
if cfg.sample_packing_eff_est: | |
training_arguments_kwargs[ | |
"sample_packing_efficiency" | |
] = cfg.sample_packing_eff_est | |
if cfg.eval_steps and cfg.evaluation_strategy: | |
# assume if the user set both, they know what they're doing | |
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy | |
training_arguments_kwargs["eval_steps"] = cfg.eval_steps | |
elif cfg.val_set_size == 0: | |
# no eval set, so don't eval | |
training_arguments_kwargs["evaluation_strategy"] = "no" | |
elif cfg.evaluation_strategy and cfg.evaluation_strategy in ["epoch", "no"]: | |
# if explicitly set for epoch, just set, and eval steps don't matter | |
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy | |
elif cfg.eval_steps: | |
# steps isn't used w/ epochs | |
training_arguments_kwargs["evaluation_strategy"] = "steps" | |
training_arguments_kwargs["eval_steps"] = cfg.eval_steps | |
else: | |
# we have an eval set, but no steps defined, default to use epoch | |
training_arguments_kwargs["evaluation_strategy"] = "epoch" | |
if cfg.save_steps: | |
# save_steps implies save_strategy of steps | |
training_arguments_kwargs["save_strategy"] = "steps" | |
training_arguments_kwargs["save_steps"] = cfg.save_steps | |
elif cfg.save_strategy: | |
training_arguments_kwargs["save_strategy"] = cfg.save_strategy | |
else: | |
# default to saving each epoch if not defined | |
training_arguments_kwargs["save_strategy"] = "epoch" | |
if cfg.do_bench_eval: | |
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval | |
if cfg.bench_dataset: | |
training_arguments_kwargs["bench_dataset"] = cfg.bench_dataset | |
if cfg.metric_for_best_model: | |
training_arguments_kwargs["metric_for_best_model"] = cfg.metric_for_best_model | |
if cfg.greater_is_better: | |
training_arguments_kwargs["greater_is_better"] = cfg.greater_is_better | |
if cfg.torch_compile: | |
if torch.__version__ < "2.1.0": # pylint: disable=protected-access | |
LOG.warning("torch>=2.1.0 required for torch_compile to work properly") | |
else: | |
import torch._dynamo # pylint: disable=redefined-outer-name | |
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access | |
True | |
) | |
training_arguments_kwargs["torch_compile"] = cfg.torch_compile | |
if cfg.torch_compile_backend: | |
training_arguments_kwargs[ | |
"torch_compile_backend" | |
] = cfg.torch_compile_backend | |
# DDP Config | |
if cfg.ddp_timeout: | |
training_arguments_kwargs["ddp_timeout"] = cfg.ddp_timeout | |
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html | |
if cfg.ddp_bucket_cap_mb: | |
training_arguments_kwargs["ddp_bucket_cap_mb"] = cfg.ddp_bucket_cap_mb | |
if cfg.ddp_broadcast_buffers is not None: | |
training_arguments_kwargs["ddp_broadcast_buffers"] = cfg.ddp_broadcast_buffers | |
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg | |
max_steps=total_num_steps if cfg.max_steps else -1, | |
max_seq_length=cfg.sequence_len, | |
per_device_train_batch_size=cfg.micro_batch_size, | |
per_device_eval_batch_size=cfg.eval_batch_size | |
if cfg.eval_batch_size is not None | |
else cfg.micro_batch_size, | |
gradient_accumulation_steps=cfg.gradient_accumulation_steps, | |
eval_accumulation_steps=cfg.gradient_accumulation_steps, | |
num_train_epochs=cfg.num_epochs, | |
learning_rate=cfg.learning_rate, | |
output_dir=cfg.output_dir, | |
save_total_limit=cfg.save_total_limit if cfg.save_total_limit else 4, | |
load_best_model_at_end=( | |
(cfg.load_best_model_at_end is not False or cfg.early_stopping_patience) | |
and cfg.val_set_size > 0 | |
and cfg.save_steps | |
and cfg.eval_steps | |
and cfg.save_steps % cfg.eval_steps == 0 | |
) | |
or False, | |
ddp_find_unused_parameters=False if cfg.ddp else None, | |
group_by_length=cfg.group_by_length, | |
report_to="wandb" if cfg.use_wandb else None, | |
run_name=cfg.wandb_run_id if cfg.use_wandb else None, | |
optim=cfg.optimizer if cfg.optimizer else "adamw_hf", | |
lr_scheduler_type=cfg.lr_scheduler | |
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep") | |
else "cosine", | |
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0, | |
sample_packing=cfg.sample_packing if cfg.sample_packing else False, | |
eval_sample_packing=cfg.eval_sample_packing, | |
sample_packing_seq_len_multiplier=cfg.micro_batch_size, | |
relora_steps=cfg.relora_steps, | |
relora_warmup_steps=cfg.relora_warmup_steps, | |
**training_arguments_kwargs, | |
) | |
trainer_kwargs = {} | |
if cfg.optimizer == "adamw_anyprecision": | |
if Path(cfg.torchdistx_path).exists(): | |
sys.path.append(cfg.torchdistx_path) | |
importlib.import_module("torchdistx") | |
callbacks = [] | |
callbacks.append(GPUStatsCallback(cfg)) | |
callbacks.append(EvalFirstStepCallback) | |
if cfg.relora_steps: | |
callbacks.append(ReLoRACallback(cfg)) | |
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True: | |
callbacks.append(SaveBetterTransformerModelCallback) | |
data_collator_kwargs = { | |
"padding": True, # True/"longest" is the default | |
} | |
if cfg.pad_to_sequence_len: | |
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil( | |
cfg.sequence_len / 64 | |
) | |
else: | |
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check | |
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html | |
data_collator_kwargs["pad_to_multiple_of"] = 64 | |
if cfg.is_llama_derived_model and cfg.landmark_attention: | |
from axolotl.monkeypatch.llama_landmark_attn import ( | |
add_mem_tokens, | |
get_mem_id, | |
set_model_mem_id, | |
) | |
set_model_mem_id(model, tokenizer) | |
LOG.info("Adding landmark attention tokens to dataset") | |
for dataset in [train_dataset, eval_dataset]: | |
dataset = dataset.map( | |
partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)), | |
batched=False, | |
num_proc=32, | |
) | |
trainer_cls = AxolotlTrainer | |
if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora"): | |
trainer_cls = OneCycleLRSchedulerTrainer | |
elif cfg.relora_steps: | |
trainer_cls = ReLoRATrainer | |
trainer = trainer_cls( | |
model=model, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
args=training_args, | |
data_collator=DataCollatorForSeq2Seq( | |
tokenizer, | |
return_tensors="pt", | |
**data_collator_kwargs, | |
), | |
bench_data_collator=transformers.DataCollatorForSeq2Seq( | |
tokenizer, | |
return_tensors="pt", | |
**data_collator_kwargs, | |
), | |
callbacks=callbacks, | |
**trainer_kwargs, | |
) | |
if cfg.use_wandb and cfg.eval_table_size > 0: | |
LogPredictionCallback = log_prediction_callback_factory(trainer, tokenizer) | |
trainer.add_callback(LogPredictionCallback(cfg)) | |
if cfg.do_bench_eval: | |
trainer.add_callback(bench_eval_callback_factory(trainer, tokenizer)) | |
# TODO on_save callback to sync checkpoints to GCP/AWS in background | |
if cfg.early_stopping_patience: | |
early_stop_cb = EarlyStoppingCallback( | |
cfg.early_stopping_patience, | |
) | |
trainer.add_callback(early_stop_cb) | |
return trainer | |