qwerrwe / tests /e2e /test_phi.py
Last commit not found
raw
history blame
3.98 kB
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
import pytest
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
@pytest.mark.skip(reason="doesn't seem to work on modal")
class TestPhi(unittest.TestCase):
"""
Test case for Phi2 models
"""
@with_temp_dir
def test_phi_ft(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"model_type": "AutoModelForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 2048,
"sample_packing": False,
"load_in_8bit": False,
"adapter": None,
"val_set_size": 0.1,
"special_tokens": {
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"max_steps": 10,
"save_steps": 10,
"eval_steps": 10,
"bf16": "auto",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()
@with_temp_dir
def test_phi_qlora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"model_type": "AutoModelForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 2048,
"sample_packing": False,
"load_in_8bit": False,
"adapter": "qlora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"max_steps": 10,
"save_steps": 10,
"eval_steps": 10,
"bf16": "auto",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()