Last commit not found
""" | |
E2E tests for lora llama | |
""" | |
import logging | |
import os | |
import unittest | |
from pathlib import Path | |
from transformers.utils import is_torch_bf16_gpu_available | |
from axolotl.cli import load_datasets | |
from axolotl.common.cli import TrainerCliArgs | |
from axolotl.train import train | |
from axolotl.utils.config import normalize_config | |
from axolotl.utils.dict import DictDefault | |
from .utils import with_temp_dir | |
LOG = logging.getLogger("axolotl.tests.e2e") | |
os.environ["WANDB_DISABLED"] = "true" | |
class TestMistral(unittest.TestCase): | |
""" | |
Test case for Llama models using LoRA | |
""" | |
def test_lora(self, temp_dir): | |
# pylint: disable=duplicate-code | |
cfg = DictDefault( | |
{ | |
"base_model": "openaccess-ai-collective/tiny-mistral", | |
"flash_attention": True, | |
"sequence_len": 1024, | |
"load_in_8bit": True, | |
"adapter": "lora", | |
"lora_r": 32, | |
"lora_alpha": 64, | |
"lora_dropout": 0.05, | |
"lora_target_linear": True, | |
"val_set_size": 0.1, | |
"special_tokens": { | |
"unk_token": "<unk>", | |
"bos_token": "<s>", | |
"eos_token": "</s>", | |
}, | |
"datasets": [ | |
{ | |
"path": "mhenrichsen/alpaca_2k_test", | |
"type": "alpaca", | |
}, | |
], | |
"num_epochs": 2, | |
"micro_batch_size": 2, | |
"gradient_accumulation_steps": 1, | |
"output_dir": temp_dir, | |
"learning_rate": 0.00001, | |
"optimizer": "adamw_torch", | |
"lr_scheduler": "cosine", | |
"max_steps": 20, | |
"save_steps": 10, | |
"eval_steps": 10, | |
} | |
) | |
normalize_config(cfg) | |
cli_args = TrainerCliArgs() | |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | |
assert (Path(temp_dir) / "adapter_model.bin").exists() | |
def test_ft(self, temp_dir): | |
# pylint: disable=duplicate-code | |
cfg = DictDefault( | |
{ | |
"base_model": "openaccess-ai-collective/tiny-mistral", | |
"flash_attention": True, | |
"sequence_len": 1024, | |
"val_set_size": 0.1, | |
"special_tokens": { | |
"unk_token": "<unk>", | |
"bos_token": "<s>", | |
"eos_token": "</s>", | |
}, | |
"datasets": [ | |
{ | |
"path": "mhenrichsen/alpaca_2k_test", | |
"type": "alpaca", | |
}, | |
], | |
"num_epochs": 2, | |
"micro_batch_size": 2, | |
"gradient_accumulation_steps": 1, | |
"output_dir": temp_dir, | |
"learning_rate": 0.00001, | |
"optimizer": "adamw_torch", | |
"lr_scheduler": "cosine", | |
"max_steps": 20, | |
"save_steps": 10, | |
"eval_steps": 10, | |
} | |
) | |
if is_torch_bf16_gpu_available(): | |
cfg.bf16 = True | |
else: | |
cfg.fp16 = True | |
normalize_config(cfg) | |
cli_args = TrainerCliArgs() | |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | |
assert (Path(temp_dir) / "pytorch_model.bin").exists() | |