import os import sys from pathlib import Path import fire import torch import transformers import yaml from attrdict import AttrDict from datasets import load_dataset, IterableDataset from peft import ( LoraConfig, get_peft_model, prepare_model_for_int8_training, ) from transformers import AutoModelForCausalLM, AutoTokenizer # add src to the pythonpath so we don't need to pip install this project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) src_dir = os.path.join(project_root, 'src') sys.path.insert(0, src_dir) from axolotl.datasets import TokenizedPromptDataset from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \ LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter def setup_wandb_env_vars(cfg): if len(cfg.wandb_project) > 0: os.environ["WANDB_PROJECT"] = cfg.wandb_project cfg.use_wandb = True if len(cfg.wandb_watch) > 0: os.environ["WANDB_WATCH"] = cfg.wandb_watch if len(cfg.wandb_log_model) > 0: os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"): if adapter != "lora": raise NotImplementedError(f"{adapter} peft adapter not available") try: model = getattr(transformers, model_type).from_pretrained( base_model, load_in_8bit=cfg.load_in_8bit, torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, device_map=cfg.device_map, ) except: model = AutoModelForCausalLM.from_pretrained( base_model, load_in_8bit=cfg.load_in_8bit, torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, device_map=cfg.device_map, ) try: tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model) except: tokenizer = AutoTokenizer.from_pretrained(base_model) if tokenizer.__class__.__name__ == "LlamaTokenizer": tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN if cfg.load_in_8bit: model = prepare_model_for_int8_training(model) lora_config = LoraConfig( r=cfg.lora_r, lora_alpha=cfg.lora_alpha, target_modules=cfg.lora_target_modules, lora_dropout=cfg.lora_dropout, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, lora_config) if cfg.ddp: model.to(f"cuda:{cfg.local_rank}") # TODO resume_from_checkpoint handling model.print_trainable_parameters() return model, tokenizer def train( config: Path = Path('configs/pythia_1_2B_alpaca.yml'), **kwargs, ): # load the config from the yaml file with open(config, 'r') as f: cfg: AttrDict = AttrDict(yaml.load(f)) # if there are any options passed in the cli, if it is something that seems valid from the yaml, # then overwrite the value for k, v in enumerate(kwargs): if k in cfg: cfg.k = v # setup some derived config / hyperparams cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size cfg.device_map = "auto" cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) cfg.ddp = cfg.world_size != 1 if cfg.ddp: cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size setup_wandb_env_vars(cfg) # Load the model and tokenizer model, tokenizer = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter) datasets = [] for d in cfg.datasets: ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, num_proc=4, split=None) if d.type == "alpaca": ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d.type == "gpteacher": ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d.type == "sharegpt": ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) if __name__ == "__main__": fire.Fire(train)