Dovud-Asadov commited on
Commit
848ef8c
·
verified ·
1 Parent(s): 199fd89

load model

Browse files
Files changed (2) hide show
  1. gpt_load.py +73 -0
  2. gpt_parts.py +132 -0
gpt_load.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ import tiktoken # Import tiktoken for GPT-2 tokenization
4
+ from gpt_parts import GPTModel # Ensure gpt_parts.py contains your GPTModel definition
5
+
6
+ # Configuration for GPT-2 model, same as used during training
7
+ GPT_CONFIG_124M = {
8
+ "vocab_size": 50257, # Vocabulary size
9
+ "context_length": 1024, # Context length
10
+ "emb_dim": 768, # Embedding dimension
11
+ "n_heads": 12, # Number of attention heads
12
+ "n_layers": 12, # Number of layers
13
+ "drop_rate": 0.1, # Dropout rate
14
+ "qkv_bias": False # Query-Key-Value bias
15
+ }
16
+
17
+ # Initialize the tokenizer using tiktoken's GPT-2 encoding
18
+ tokenizer = tiktoken.get_encoding("gpt2")
19
+
20
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ model = GPTModel(GPT_CONFIG_124M).to(device)
22
+ model.load_state_dict(torch.load("model.pth", map_location=device, weights_only=True))
23
+ model.eval() # Set model to evaluation mode
24
+
25
+ def text_to_token_ids(text, tokenizer):
26
+ """Encode text to token IDs."""
27
+ encoded = tokenizer.encode(text)
28
+ return torch.tensor(encoded).unsqueeze(0)
29
+
30
+ def token_ids_to_text(token_ids, tokenizer):
31
+ """Decode token IDs to text."""
32
+ return tokenizer.decode(token_ids.squeeze(0).tolist())
33
+
34
+ def generate_text_simple(model, idx, max_new_tokens, context_size):
35
+ """Autoregressively generate new tokens."""
36
+ for _ in range(max_new_tokens):
37
+ idx_cond = idx[:, -context_size:]
38
+ with torch.no_grad():
39
+ logits = model(idx_cond)
40
+ logits = logits[:, -1, :]
41
+ idx_next = torch.argmax(logits, dim=-1, keepdim=True)
42
+ idx = torch.cat((idx, idx_next), dim=1)
43
+ return idx
44
+
45
+ # Define text generation function for Gradio
46
+ def generate_text(start_context, max_new_tokens=50):
47
+ # Encode the starting context
48
+ encoded_input = text_to_token_ids(start_context, tokenizer).to(device)
49
+
50
+ # Generate text
51
+ generated_token_ids = generate_text_simple(
52
+ model=model,
53
+ idx=encoded_input,
54
+ max_new_tokens=max_new_tokens,
55
+ context_size=GPT_CONFIG_124M["context_length"]
56
+ )
57
+
58
+ # Decode the generated tokens to text
59
+ generated_text = token_ids_to_text(generated_token_ids, tokenizer)
60
+ return generated_text.replace("\n", " ")
61
+
62
+ iface = gr.Interface(
63
+ fn=generate_text,
64
+ inputs=[
65
+ gr.Textbox(lines=2, placeholder="Enter starting text here...", label="Start Context"),
66
+ gr.Slider(minimum=1, maximum=100, step=1, label="Max New Tokens")
67
+ ],
68
+ outputs="text",
69
+ title="GPT-2 Text Generation",
70
+ description="Generate text using a fine-tuned GPT-2 model. Enter some starting text, and choose the maximum number of tokens to generate."
71
+ )
72
+ iface.launch(share=True)
73
+
gpt_parts.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class MultiHeadAttention(nn.Module):
5
+ def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
6
+ super().__init__()
7
+ assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
8
+
9
+ self.d_out = d_out
10
+ self.num_heads = num_heads
11
+ self.head_dim = d_out // num_heads
12
+
13
+ self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
14
+ self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
15
+ self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
16
+ self.out_proj = nn.Linear(d_out, d_out)
17
+ self.dropout = nn.Dropout(dropout)
18
+ self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
19
+
20
+ def forward(self, x):
21
+ b, num_tokens, d_in = x.shape
22
+
23
+ keys = self.W_key(x)
24
+ queries = self.W_query(x)
25
+ values = self.W_value(x)
26
+ keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
27
+ values = values.view(b, num_tokens, self.num_heads, self.head_dim)
28
+ queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
29
+ keys = keys.transpose(1, 2)
30
+ queries = queries.transpose(1, 2)
31
+ values = values.transpose(1, 2)
32
+ attn_scores = queries @ keys.transpose(2, 3)
33
+ mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
34
+ attn_scores.masked_fill_(mask_bool, -torch.inf)
35
+ attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
36
+ attn_weights = self.dropout(attn_weights)
37
+ context_vec = (attn_weights @ values).transpose(1, 2)
38
+ context_vec = context_vec.reshape(b, num_tokens, self.d_out)
39
+ context_vec = self.out_proj(context_vec)
40
+ return context_vec
41
+
42
+ class LayerNorm(nn.Module):
43
+ def __init__(self, emb_dim):
44
+ super().__init__()
45
+ self.eps = 1e-5
46
+ self.scale = nn.Parameter(torch.ones(emb_dim))
47
+ self.shift = nn.Parameter(torch.zeros(emb_dim))
48
+
49
+ def forward(self, x):
50
+ mean = x.mean(dim=-1, keepdim=True)
51
+ var = x.var(dim=-1, keepdim=True, unbiased=False)
52
+ norm_x = (x - mean) / torch.sqrt(var + self.eps)
53
+ return self.scale * norm_x + self.shift
54
+
55
+
56
+ class GELU(nn.Module):
57
+ def __init__(self):
58
+ super().__init__()
59
+
60
+ def forward(self, x):
61
+ return 0.5 * x * (1 + torch.tanh(
62
+ torch.sqrt(torch.tensor(2.0 / torch.pi)) *
63
+ (x + 0.044715 * torch.pow(x, 3))
64
+ ))
65
+
66
+
67
+ class FeedForward(nn.Module):
68
+ def __init__(self, cfg):
69
+ super().__init__()
70
+ self.layers = nn.Sequential(
71
+ nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
72
+ GELU(),
73
+ nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
74
+ )
75
+
76
+ def forward(self, x):
77
+ return self.layers(x)
78
+
79
+ class TransformerBlock(nn.Module):
80
+ def __init__(self, cfg):
81
+ super().__init__()
82
+ self.att = MultiHeadAttention(
83
+ d_in=cfg["emb_dim"],
84
+ d_out=cfg["emb_dim"],
85
+ context_length=cfg["context_length"],
86
+ num_heads=cfg["n_heads"],
87
+ dropout=cfg["drop_rate"],
88
+ qkv_bias=cfg["qkv_bias"])
89
+ self.ff = FeedForward(cfg)
90
+ self.norm1 = LayerNorm(cfg["emb_dim"])
91
+ self.norm2 = LayerNorm(cfg["emb_dim"])
92
+ self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
93
+
94
+ def forward(self, x):
95
+ shortcut = x
96
+ x = self.norm1(x)
97
+ x = self.att(x)
98
+ x = self.drop_shortcut(x)
99
+ x = x + shortcut
100
+
101
+ shortcut = x
102
+ x = self.norm2(x)
103
+ x = self.ff(x)
104
+ x = self.drop_shortcut(x)
105
+ x = x + shortcut
106
+
107
+ return x
108
+
109
+
110
+ class GPTModel(nn.Module):
111
+ def __init__(self, cfg):
112
+ super().__init__()
113
+ self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
114
+ self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
115
+ self.drop_emb = nn.Dropout(cfg["drop_rate"])
116
+
117
+ self.trf_blocks = nn.Sequential(
118
+ *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
119
+
120
+ self.final_norm = LayerNorm(cfg["emb_dim"])
121
+ self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
122
+
123
+ def forward(self, in_idx):
124
+ batch_size, seq_len = in_idx.shape
125
+ tok_embeds = self.tok_emb(in_idx)
126
+ pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
127
+ x = tok_embeds + pos_embeds
128
+ x = self.drop_emb(x)
129
+ x = self.trf_blocks(x)
130
+ x = self.final_norm(x)
131
+ logits = self.out_head(x)
132
+ return logits