Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +4 -4
- app.py +54 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
title: CAS Biomedical POS Tagging
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
|
|
1 |
---
|
2 |
title: CAS Biomedical POS Tagging
|
3 |
+
emoji: ⚕️
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.2.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
2 |
+
import sentencepiece
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
text_1 = "ddd"
|
7 |
+
|
8 |
+
text_2 = """ddd"""
|
9 |
+
|
10 |
+
st.title("Demo for Biomedical POS Tagging in French with DrBERT")
|
11 |
+
st.sidebar.write("Model : DrBERT-7GB base CAS corpus POS tagging")
|
12 |
+
st.sidebar.write("For details of model: 'https://huggingface.co/Dr-BERT/DrBERT-7GB'")
|
13 |
+
|
14 |
+
model_checkpoint = "Dr-BERT/DrBERT-7GB"
|
15 |
+
aggregation = "simple"
|
16 |
+
|
17 |
+
st.subheader("Select Text")
|
18 |
+
context_1 = st.text_area("Text #1", text_1, height=128)
|
19 |
+
context_2 = st.text_area("Text #2", text_2, height=128)
|
20 |
+
context_3 = st.text_area("New Text", value="", height=128)
|
21 |
+
|
22 |
+
context = st.radio("Select Text", ("Text #1", "Text #2", "New Text"))
|
23 |
+
|
24 |
+
if context == "Text #1":
|
25 |
+
input_text = context_1
|
26 |
+
elif context == "Text #2":
|
27 |
+
input_text = context_2
|
28 |
+
elif context == "New Text":
|
29 |
+
input_text = context_3
|
30 |
+
|
31 |
+
@st.cache(allow_output_mutation=True)
|
32 |
+
def setModel(model_checkpoint, aggregation):
|
33 |
+
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
35 |
+
return pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
|
36 |
+
|
37 |
+
Run_Button = st.button("Run", key=None)
|
38 |
+
if Run_Button == True:
|
39 |
+
|
40 |
+
ner_pipeline = setModel(model_checkpoint, aggregation)
|
41 |
+
output = ner_pipeline(input_text)
|
42 |
+
|
43 |
+
df = pd.DataFrame.from_dict(output)
|
44 |
+
|
45 |
+
if aggregation != "none":
|
46 |
+
df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True)
|
47 |
+
else:
|
48 |
+
df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True)
|
49 |
+
|
50 |
+
cols_to_keep = ['word','POS Tag','score','start','end']
|
51 |
+
df_final = df[cols_to_keep]
|
52 |
+
|
53 |
+
st.subheader("POS Tags")
|
54 |
+
st.dataframe(df_final)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
pandas
|
5 |
+
sentencepiece
|