from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer import sentencepiece import streamlit as st import pandas as pd text_1 = "Patiente atteinte d’une pathologie chronique" text_2 = "Vous êtes amené à prendre en charge un homme de 54 ans qui souffre d’une spondylarthrite ankylosante sévère." st.title("Demo for Biomedical POS Tagging in French with DrBERT") st.sidebar.write("Model : DrBERT-7GB base CAS corpus POS tagging") st.sidebar.write("For details of model: 'https://huggingface.co/Dr-BERT/DrBERT-7GB'") model_checkpoint = "Dr-BERT/CAS-Biomedical-POS-Tagging" aggregation = "simple" st.subheader("Select Text") context_1 = st.text_area("Text #1", text_1, height=128) context_2 = st.text_area("Text #2", text_2, height=128) context_3 = st.text_area("New Text", value="", height=128) context = st.radio("Select Text", ("Text #1", "Text #2", "New Text")) if context == "Text #1": input_text = context_1 elif context == "Text #2": input_text = context_2 elif context == "New Text": input_text = context_3 @st.cache(allow_output_mutation=True) def setModel(model_checkpoint, aggregation): model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) return pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation), model.config.id2label Run_Button = st.button("Run", key=None) if Run_Button == True: ner_pipeline, id2label = setModel(model_checkpoint, aggregation) output = ner_pipeline(input_text) # print(id2label) # output_new = [] # for o in output: # o["entity_group"] = id2label[int(o["entity_group"].split("_")[-1])] # output_new.append(o) df = pd.DataFrame.from_dict(output) if aggregation != "none": df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True) else: df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True) cols_to_keep = ['word','POS Tag','score','start','end'] df_final = df[cols_to_keep] st.subheader("POS Tags") st.dataframe(df_final)