File size: 12,261 Bytes
51a8c11
bbad637
51a8c11
bbad637
 
 
51a8c11
 
 
 
 
 
 
9654b35
8091023
 
 
 
bbad637
8091023
 
 
 
 
 
 
 
 
9654b35
bbad637
 
9654b35
bbad637
 
 
 
 
 
 
 
 
 
 
 
51a8c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
##### `πŸ’β€ Open_Assistant.py`
##### Chat Llm Streaming
##### https://huggingface.co/spaces/olivierdehaene/chat-llm-streaming/blob/main/README.md
##### https://open-assistant.io/dashboard
##### https://github.com/LAION-AI/Open-Assistant

##### Please reach out to [email protected] for any questions
#### Loading needed Python libraries
import streamlit as st
import os
from text_generation import Client, InferenceAPIClient
from text_generation import InferenceAPIClient




#### Streamlit initial setup
st.set_page_config(
  page_title = "πŸ’ Open Assistant LLM",
  page_icon = "images/OpenAssistant.png",
  layout = "centered",
  initial_sidebar_state = "expanded"
)




#### Main program
st.header('πŸ’β€ Open Assistant LLM')
st.write('Conversational AI for everyone.')
st.write('In the same way that Stable Diffusion helped the world make art and images in new ways, this helps to improve the world by providing amazing conversational AI.')
st.write('This is the first iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a Pythia 12B that was fine-tuned on ~22k human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before March 7, 2023.')
st.write(':orange[Needs to be run on Hugging Face to access the OpenAssistant model (Run it here https://huggingface.co/spaces/DrBenjamin/AI_Demo).]')
with st.form('OpenAssistant'):
  client = InferenceAPIClient("OpenAssistant/oasst-sft-1-pythia-12b")
  st.subheader('Question')
  input_text = st.text_input('Ask a question')
  input_text = '<|prompter|>' + input_text + '<|endoftext|><|assistant|>'
  submitted = st.form_submit_button('Submit')
  if submitted:
    text = client.generate(input_text).generated_text
    st.subheader('Answer')
    st.write('Answer: :green[' + str(text) + ']')


# Token Streaming
#text = ""
#for response in client.generate_stream("<|prompter|>Why is the sky blue?<|endoftext|><|assistant|>"):
#   if not response.token.special:
#       print(response.token.text)
#       text += response.token.text
#st.write(text)

#
# openchat_preprompt = (
#     "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
#     "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
#     "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
#     "but I am programmed to be helpful, polite, honest, and friendly.\n"
# )
#
#
# def get_client(model: str):
#     if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
#         return Client(os.getenv("OPENCHAT_API_URL"))
#     return InferenceAPIClient(model, token = os.getenv("HF_TOKEN", None))
#
#
# def get_usernames(model: str):
#     """
#     Returns:
#         (str, str, str, str): pre-prompt, username, bot name, separator
#     """
#     if model == "OpenAssistant/oasst-sft-1-pythia-12b":
#         return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
#     if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
#         return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
#     return "", "User: ", "Assistant: ", "\n"
#
#
# def predict(
#         model: str,
#         inputs: str,
#         typical_p: float,
#         top_p: float,
#         temperature: float,
#         top_k: int,
#         repetition_penalty: float,
#         watermark: bool,
#         chatbot,
#         history,
# ):
#     client = get_client(model)
#     preprompt, user_name, assistant_name, sep = get_usernames(model)
#
#     history.append(inputs)
#
#     past = []
#     for data in chatbot:
#         user_data, model_data = data
#
#         if not user_data.startswith(user_name):
#             user_data = user_name + user_data
#         if not model_data.startswith(sep + assistant_name):
#             model_data = sep + assistant_name + model_data
#
#         past.append(user_data + model_data.rstrip() + sep)
#
#     if not inputs.startswith(user_name):
#         inputs = user_name + inputs
#
#     total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
#
#     partial_words = ""
#
#     if model == "OpenAssistant/oasst-sft-1-pythia-12b":
#         iterator = client.generate_stream(
#             total_inputs,
#             typical_p = typical_p,
#             truncate = 1000,
#             watermark = watermark,
#             max_new_tokens = 500,
#         )
#     else:
#         iterator = client.generate_stream(
#             total_inputs,
#             top_p = top_p if top_p < 1.0 else None,
#             top_k = top_k,
#             truncate = 1000,
#             repetition_penalty = repetition_penalty,
#             watermark = watermark,
#             temperature = temperature,
#             max_new_tokens = 500,
#             stop_sequences = [user_name.rstrip(), assistant_name.rstrip()],
#         )
#
#     for i, response in enumerate(iterator):
#         if response.token.special:
#             continue
#
#         partial_words = partial_words + response.token.text
#         if partial_words.endswith(user_name.rstrip()):
#             partial_words = partial_words.rstrip(user_name.rstrip())
#         if partial_words.endswith(assistant_name.rstrip()):
#             partial_words = partial_words.rstrip(assistant_name.rstrip())
#
#         if i == 0:
#             history.append(" " + partial_words)
#         elif response.token.text not in user_name:
#             history[-1] = partial_words
#
#         chat = [
#             (history[i].strip(), history[i + 1].strip())
#             for i in range(0, len(history) - 1, 2)
#         ]
#         yield chat, history
#
#
# def reset_textbox():
#     return gr.update(value = "")
#
#
# def radio_on_change(
#         value: str,
#         disclaimer,
#         typical_p,
#         top_p,
#         top_k,
#         temperature,
#         repetition_penalty,
#         watermark,
# ):
#     if value == "OpenAssistant/oasst-sft-1-pythia-12b":
#         typical_p = typical_p.update(value = 0.2, visible = True)
#         top_p = top_p.update(visible = False)
#         top_k = top_k.update(visible = False)
#         temperature = temperature.update(visible = False)
#         disclaimer = disclaimer.update(visible = False)
#         repetition_penalty = repetition_penalty.update(visible = False)
#         watermark = watermark.update(False)
#     elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
#         typical_p = typical_p.update(visible = False)
#         top_p = top_p.update(value = 0.25, visible = True)
#         top_k = top_k.update(value = 50, visible = True)
#         temperature = temperature.update(value = 0.6, visible = True)
#         repetition_penalty = repetition_penalty.update(value = 1.01, visible = True)
#         watermark = watermark.update(False)
#         disclaimer = disclaimer.update(visible = True)
#     else:
#         typical_p = typical_p.update(visible = False)
#         top_p = top_p.update(value = 0.95, visible = True)
#         top_k = top_k.update(value = 4, visible = True)
#         temperature = temperature.update(value = 0.5, visible = True)
#         repetition_penalty = repetition_penalty.update(value = 1.03, visible = True)
#         watermark = watermark.update(True)
#         disclaimer = disclaimer.update(visible = False)
#     return (
#         disclaimer,
#         typical_p,
#         top_p,
#         top_k,
#         temperature,
#         repetition_penalty,
#         watermark,
#     )
#
#
# title = """<h1 align="center">πŸ”₯Large Language Model API πŸš€StreamingπŸš€</h1>"""
# description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
# ```
# User: <utterance>
# Assistant: <utterance>
# User: <utterance>
# Assistant: <utterance>
# ...
# ```
# In this app, you can explore the outputs of multiple LLMs when prompted in this way.
# """
#
# openchat_disclaimer = """
# <div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
# """
#
# with gr.Blocks(
#         css = """#col_container {margin-left: auto; margin-right: auto;}
#                 #chatbot {height: 520px; overflow: auto;}"""
# ) as demo:
#     gr.HTML(title)
#     with gr.Column(elem_id = "col_container"):
#         model = gr.Radio(
#             value = "OpenAssistant/oasst-sft-1-pythia-12b",
#             choices = [
#                 "OpenAssistant/oasst-sft-1-pythia-12b",
#                 # "togethercomputer/GPT-NeoXT-Chat-Base-20B",
#                 "google/flan-t5-xxl",
#                 "google/flan-ul2",
#                 "bigscience/bloom",
#                 "bigscience/bloomz",
#                 "EleutherAI/gpt-neox-20b",
#             ],
#             label = "Model",
#             interactive = True,
#         )
#
#         chatbot = gr.Chatbot(elem_id = "chatbot")
#         inputs = gr.Textbox(
#             placeholder = "Hi there!", label = "Type an input and press Enter"
#         )
#         disclaimer = gr.Markdown(openchat_disclaimer, visible = False)
#         state = gr.State([])
#         b1 = gr.Button()
#
#         with gr.Accordion("Parameters", open = False):
#             typical_p = gr.Slider(
#                 minimum = -0,
#                 maximum = 1.0,
#                 value = 0.2,
#                 step = 0.05,
#                 interactive = True,
#                 label = "Typical P mass",
#             )
#             top_p = gr.Slider(
#                 minimum = -0,
#                 maximum = 1.0,
#                 value = 0.25,
#                 step = 0.05,
#                 interactive = True,
#                 label = "Top-p (nucleus sampling)",
#                 visible = False,
#             )
#             temperature = gr.Slider(
#                 minimum = -0,
#                 maximum = 5.0,
#                 value = 0.6,
#                 step = 0.1,
#                 interactive = True,
#                 label = "Temperature",
#                 visible = False,
#             )
#             top_k = gr.Slider(
#                 minimum = 1,
#                 maximum = 50,
#                 value = 50,
#                 step = 1,
#                 interactive = True,
#                 label = "Top-k",
#                 visible = False,
#             )
#             repetition_penalty = gr.Slider(
#                 minimum = 0.1,
#                 maximum = 3.0,
#                 value = 1.03,
#                 step = 0.01,
#                 interactive = True,
#                 label = "Repetition Penalty",
#                 visible = False,
#             )
#             watermark = gr.Checkbox(value = False, label = "Text watermarking")
#
#     model.change(
#         lambda value: radio_on_change(
#             value,
#             disclaimer,
#             typical_p,
#             top_p,
#             top_k,
#             temperature,
#             repetition_penalty,
#             watermark,
#         ),
#         inputs = model,
#         outputs = [
#             disclaimer,
#             typical_p,
#             top_p,
#             top_k,
#             temperature,
#             repetition_penalty,
#             watermark,
#         ],
#     )
#
#     inputs.submit(
#         predict,
#         [
#             model,
#             inputs,
#             typical_p,
#             top_p,
#             temperature,
#             top_k,
#             repetition_penalty,
#             watermark,
#             chatbot,
#             state,
#         ],
#         [chatbot, state],
#     )
#     b1.click(
#         predict,
#         [
#             model,
#             inputs,
#             typical_p,
#             top_p,
#             temperature,
#             top_k,
#             repetition_penalty,
#             watermark,
#             chatbot,
#             state,
#         ],
#         [chatbot, state],
#     )
#     b1.click(reset_textbox, [], [inputs])
#     inputs.submit(reset_textbox, [], [inputs])
#
#     gr.Markdown(description)
#     demo.queue(concurrency_count = 16).launch(debug = True)