Spaces:
Sleeping
Sleeping
File size: 1,284 Bytes
eb4795a c348026 eb4795a c348026 eb4795a c348026 eb4795a c348026 eb4795a c348026 eb4795a c348026 01f28c9 eb4795a 01f28c9 c348026 eb4795a c348026 eb4795a c348026 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from fastai.vision.all import *
import pathlib
# Adjust the path handling for compatibility between different OS
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
pathlib.PosixPath = temp
# Load your pre-trained model
learn = load_learner('model.pkl')
labels = learn.dls.vocab
# Prediction function
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Title and description
title = "Female/Male Classifier"
description = "A Female/Male classifier trained on the duckduckgo search result with fastai. Created as a demo for Gradio and HuggingFace Spaces."
examples = ['femaleDefault.jpg', 'maleDefault.jpg', 'dragQueen1.jpg', 'dragQueen2.jpg', 'femaleAngry1.jpg', 'femaleAngry2.jpg', 'femaleMuscle1.jpg', 'femaleMuscle2.jpg', 'maleAsian.jpg', 'maleEurope.jpg', 'femaleAsian.jpg', 'femaleDefault.jpg', 'maleCrying2.jpg', 'maleCrying2No.jpg']
# Update the Gradio Interface
inter = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"), # Removed 'shape' argument
outputs=gr.Label(),
title=title,
description=description,
examples=examples,
cache_examples=True,
examples_per_page=2
)
inter.queue()
inter.launch()
|