import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms # Remove this line as it is GPU specific # torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") # Change to CPU transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") image_size = im.size origin = im.copy() image = load_img(im) input_images = transform_image(image).unsqueeze(0).to("cpu") # Change to CPU # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return (image, origin) slider1 = ImageSlider(label="birefnet", type="pil") slider2 = ImageSlider(label="birefnet", type="pil") image = gr.Image(label="Upload an image") text = gr.Textbox(label="Paste an image URL") chameleon = load_img("chameleon.jpg", output_type="pil") url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" tab1 = gr.Interface( fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image" ) tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text") demo = gr.TabbedInterface( [tab1, tab2], ["image", "text"], title="birefnet for background removal" ) if __name__ == "__main__": demo.launch()