Spaces:
Running
Running
""" | |
File: app_utils.py | |
Author: Elena Ryumina and Dmitry Ryumin | |
Description: This module contains utility functions for facial expression recognition application. | |
License: MIT License | |
""" | |
import torch | |
import numpy as np | |
import mediapipe as mp | |
from PIL import Image | |
import cv2 | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
# Importing necessary components for the Gradio app | |
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing | |
from app.face_utils import get_box, display_info | |
from app.config import DICT_EMO, config_data | |
from app.plot import statistics_plot | |
mp_face_mesh = mp.solutions.face_mesh | |
def preprocess_image_and_predict(inp): | |
inp = np.array(inp) | |
if inp is None: | |
return None, None, None | |
try: | |
h, w = inp.shape[:2] | |
except Exception: | |
return None, None, None | |
with mp_face_mesh.FaceMesh( | |
max_num_faces=1, | |
refine_landmarks=False, | |
min_detection_confidence=0.5, | |
min_tracking_confidence=0.5, | |
) as face_mesh: | |
results = face_mesh.process(inp) | |
if results.multi_face_landmarks: | |
for fl in results.multi_face_landmarks: | |
startX, startY, endX, endY = get_box(fl, w, h) | |
cur_face = inp[startY:endY, startX:endX] | |
cur_face_n = pth_processing(Image.fromarray(cur_face)) | |
with torch.no_grad(): | |
prediction = ( | |
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1) | |
.detach() | |
.numpy()[0] | |
) | |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)} | |
grayscale_cam = cam(input_tensor=cur_face_n) | |
grayscale_cam = grayscale_cam[0, :] | |
cur_face_hm = cv2.resize(cur_face,(224,224)) | |
cur_face_hm = np.float32(cur_face_hm) / 255 | |
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True) | |
return cur_face, heatmap, confidences | |
else: | |
return None, None, None | |
def preprocess_video_and_predict(video): | |
cap = cv2.VideoCapture(video) | |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = np.round(cap.get(cv2.CAP_PROP_FPS)) | |
path_save_video_face = 'result_face.mp4' | |
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) | |
path_save_video_hm = 'result_hm.mp4' | |
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) | |
lstm_features = [] | |
count_frame = 1 | |
count_face = 0 | |
probs = [] | |
frames = [] | |
last_output = None | |
last_heatmap = None | |
cur_face = None | |
with mp_face_mesh.FaceMesh( | |
max_num_faces=1, | |
refine_landmarks=False, | |
min_detection_confidence=0.5, | |
min_tracking_confidence=0.5) as face_mesh: | |
while cap.isOpened(): | |
_, frame = cap.read() | |
if frame is None: break | |
frame_copy = frame.copy() | |
frame_copy.flags.writeable = False | |
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
results = face_mesh.process(frame_copy) | |
frame_copy.flags.writeable = True | |
if results.multi_face_landmarks: | |
for fl in results.multi_face_landmarks: | |
startX, startY, endX, endY = get_box(fl, w, h) | |
cur_face = frame_copy[startY:endY, startX: endX] | |
if count_face%config_data.FRAME_DOWNSAMPLING == 0: | |
cur_face_copy = pth_processing(Image.fromarray(cur_face)) | |
with torch.no_grad(): | |
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy() | |
grayscale_cam = cam(input_tensor=cur_face_copy) | |
grayscale_cam = grayscale_cam[0, :] | |
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA) | |
cur_face_hm = np.float32(cur_face_hm) / 255 | |
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False) | |
last_heatmap = heatmap | |
if len(lstm_features) == 0: | |
lstm_features = [features]*10 | |
else: | |
lstm_features = lstm_features[1:] + [features] | |
lstm_f = torch.from_numpy(np.vstack(lstm_features)) | |
lstm_f = torch.unsqueeze(lstm_f, 0) | |
with torch.no_grad(): | |
output = pth_model_dynamic(lstm_f).detach().numpy() | |
last_output = output | |
if count_face == 0: | |
count_face += 1 | |
else: | |
if last_output is not None: | |
output = last_output | |
heatmap = last_heatmap | |
elif last_output is None: | |
output = np.empty((1, 7)) | |
output[:] = np.nan | |
probs.append(output[0]) | |
frames.append(count_frame) | |
else: | |
if last_output is not None: | |
lstm_features = [] | |
empty = np.empty((7)) | |
empty[:] = np.nan | |
probs.append(empty) | |
frames.append(count_frame) | |
if cur_face is not None: | |
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3) | |
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR) | |
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA) | |
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3) | |
vid_writer_face.write(cur_face) | |
vid_writer_hm.write(heatmap_f) | |
count_frame += 1 | |
if count_face != 0: | |
count_face += 1 | |
vid_writer_face.release() | |
vid_writer_hm.release() | |
stat = statistics_plot(frames, probs) | |
if not stat: | |
return None, None, None, None | |
return video, path_save_video_face, path_save_video_hm, stat |