File size: 14,939 Bytes
ffaa9fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#!/usr/bin/env python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import io

import torch
from torch.utils.data import DataLoader

from accelerate import Accelerator
from accelerate.data_loader import prepare_data_loader
from accelerate.state import AcceleratorState
from accelerate.test_utils import RegressionDataset, RegressionModel, are_the_same_tensors
from accelerate.utils import (
    DistributedType,
    gather,
    is_bf16_available,
    is_torch_version,
    set_seed,
    synchronize_rng_states,
)


def print_main(state):
    print(f"Printing from the main process {state.process_index}")


def print_local_main(state):
    print(f"Printing from the local main process {state.local_process_index}")


def print_last(state):
    print(f"Printing from the last process {state.process_index}")


def print_on(state, process_idx):
    print(f"Printing from process {process_idx}: {state.process_index}")


def process_execution_check():
    accelerator = Accelerator()
    num_processes = accelerator.num_processes
    with accelerator.main_process_first():
        idx = torch.tensor(accelerator.process_index).to(accelerator.device)
    idxs = accelerator.gather(idx)
    if num_processes > 1:
        assert idxs[0] == 0, "Main process was not first."

    # Test the decorators
    f = io.StringIO()
    with contextlib.redirect_stdout(f):
        accelerator.on_main_process(print_main)(accelerator.state)
    result = f.getvalue().rstrip()
    if accelerator.is_main_process:
        assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0"
    else:
        assert f.getvalue().rstrip() == "", f'{result} != ""'
    f.truncate(0)
    f.seek(0)

    with contextlib.redirect_stdout(f):
        accelerator.on_local_main_process(print_local_main)(accelerator.state)
    if accelerator.is_local_main_process:
        assert f.getvalue().rstrip() == "Printing from the local main process 0"
    else:
        assert f.getvalue().rstrip() == ""
    f.truncate(0)
    f.seek(0)

    with contextlib.redirect_stdout(f):
        accelerator.on_last_process(print_last)(accelerator.state)
    if accelerator.is_last_process:
        assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}"
    else:
        assert f.getvalue().rstrip() == ""
    f.truncate(0)
    f.seek(0)

    for process_idx in range(num_processes):
        with contextlib.redirect_stdout(f):
            accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx)
        if accelerator.process_index == process_idx:
            assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}"
        else:
            assert f.getvalue().rstrip() == ""
        f.truncate(0)
        f.seek(0)


def init_state_check():
    # Test we can instantiate this twice in a row.
    state = AcceleratorState()
    if state.local_process_index == 0:
        print("Testing, testing. 1, 2, 3.")
    print(state)


def rng_sync_check():
    state = AcceleratorState()
    synchronize_rng_states(["torch"])
    assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU."
    if state.distributed_type == DistributedType.MULTI_GPU:
        synchronize_rng_states(["cuda"])
        assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU."
    generator = torch.Generator()
    synchronize_rng_states(["generator"], generator=generator)
    assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator."

    if state.local_process_index == 0:
        print("All rng are properly synched.")


def dl_preparation_check():
    state = AcceleratorState()
    length = 32 * state.num_processes

    dl = DataLoader(range(length), batch_size=8)
    dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True)
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result)

    print(state.process_index, result, type(dl))
    assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."

    dl = DataLoader(range(length), batch_size=8)
    dl = prepare_data_loader(
        dl,
        state.device,
        state.num_processes,
        state.process_index,
        put_on_device=True,
        split_batches=True,
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result)
    assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."

    if state.process_index == 0:
        print("Non-shuffled dataloader passing.")

    dl = DataLoader(range(length), batch_size=8, shuffle=True)
    dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True)
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result).tolist()
    result.sort()
    assert result == list(range(length)), "Wrong shuffled dataloader result."

    dl = DataLoader(range(length), batch_size=8, shuffle=True)
    dl = prepare_data_loader(
        dl,
        state.device,
        state.num_processes,
        state.process_index,
        put_on_device=True,
        split_batches=True,
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result).tolist()
    result.sort()
    assert result == list(range(length)), "Wrong shuffled dataloader result."

    if state.local_process_index == 0:
        print("Shuffled dataloader passing.")


def central_dl_preparation_check():
    state = AcceleratorState()
    length = 32 * state.num_processes

    dl = DataLoader(range(length), batch_size=8)
    dl = prepare_data_loader(
        dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result)
    assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."

    dl = DataLoader(range(length), batch_size=8)
    dl = prepare_data_loader(
        dl,
        state.device,
        state.num_processes,
        state.process_index,
        put_on_device=True,
        split_batches=True,
        dispatch_batches=True,
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result)
    assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."

    if state.process_index == 0:
        print("Non-shuffled central dataloader passing.")

    dl = DataLoader(range(length), batch_size=8, shuffle=True)
    dl = prepare_data_loader(
        dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result).tolist()
    result.sort()
    assert result == list(range(length)), "Wrong shuffled dataloader result."

    dl = DataLoader(range(length), batch_size=8, shuffle=True)
    dl = prepare_data_loader(
        dl,
        state.device,
        state.num_processes,
        state.process_index,
        put_on_device=True,
        split_batches=True,
        dispatch_batches=True,
    )
    result = []
    for batch in dl:
        result.append(gather(batch))
    result = torch.cat(result).tolist()
    result.sort()
    assert result == list(range(length)), "Wrong shuffled dataloader result."

    if state.local_process_index == 0:
        print("Shuffled central dataloader passing.")


def mock_training(length, batch_size, generator):
    set_seed(42)
    generator.manual_seed(42)
    train_set = RegressionDataset(length=length)
    train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    for epoch in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            loss.backward()
            optimizer.step()
    return train_set, model


def training_check():
    state = AcceleratorState()
    generator = torch.Generator()
    batch_size = 8
    length = batch_size * 4 * state.num_processes

    train_set, old_model = mock_training(length, batch_size * state.num_processes, generator)
    assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes."
    assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes."

    accelerator = Accelerator()
    train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
    set_seed(42)
    generator.manual_seed(42)
    for epoch in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            accelerator.backward(loss)
            optimizer.step()

    model = accelerator.unwrap_model(model).cpu()
    assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
    assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."

    accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.")

    accelerator = Accelerator(split_batches=True)
    train_dl = DataLoader(train_set, batch_size=batch_size * state.num_processes, shuffle=True, generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
    set_seed(42)
    generator.manual_seed(42)
    for _ in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            accelerator.backward(loss)
            optimizer.step()

    model = accelerator.unwrap_model(model).cpu()
    assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
    assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."

    accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.")

    if torch.cuda.is_available():
        # Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16
        print("FP16 training check.")
        AcceleratorState._reset_state()
        accelerator = Accelerator(mixed_precision="fp16")
        train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

        train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
        set_seed(42)
        generator.manual_seed(42)
        for _ in range(3):
            for batch in train_dl:
                model.zero_grad()
                output = model(batch["x"])
                loss = torch.nn.functional.mse_loss(output, batch["y"])
                accelerator.backward(loss)
                optimizer.step()

        model = accelerator.unwrap_model(model).cpu()
        assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
        assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."

    # BF16 support is only for CPU + TPU, and some GPU
    if is_bf16_available():
        # Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16
        print("BF16 training check.")
        AcceleratorState._reset_state()
        accelerator = Accelerator(mixed_precision="bf16")
        train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

        train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
        set_seed(42)
        generator.manual_seed(42)
        for _ in range(3):
            for batch in train_dl:
                model.zero_grad()
                output = model(batch["x"])
                loss = torch.nn.functional.mse_loss(output, batch["y"])
                accelerator.backward(loss)
                optimizer.step()

        model = accelerator.unwrap_model(model).cpu()
        assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
        assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."


def main():
    accelerator = Accelerator()
    state = accelerator.state
    if state.local_process_index == 0:
        print("**Initialization**")
    init_state_check()
    if state.local_process_index == 0:
        print("\n**Test process execution**")
    process_execution_check()

    if state.local_process_index == 0:
        print("\n**Test random number generator synchronization**")
    rng_sync_check()

    if state.local_process_index == 0:
        print("\n**DataLoader integration test**")
    dl_preparation_check()
    if state.distributed_type != DistributedType.TPU and is_torch_version(">=", "1.8.0"):
        central_dl_preparation_check()

    # Trainings are not exactly the same in DeepSpeed and CPU mode
    if state.distributed_type == DistributedType.DEEPSPEED:
        return

    if state.local_process_index == 0:
        print("\n**Training integration test**")
    training_check()


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()