Spaces:
Sleeping
Sleeping
File size: 46,631 Bytes
ffaa9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 |
``aenum`` --- support for advanced enumerations, namedtuples, and constants
===========================================================================
.. :synopsis:: enumerations are sets of symbolic names bound to unique,
constant values; namedtuples are fixed- or variable-length
tuples with the positions addressable by field name as well as by index;
constants are classes of named constants that cannot be rebound.
.. :moduleauthor:: Ethan Furman <[email protected]>
----------------
An ``Enum`` is a set of symbolic names (members) bound to unique, constant
values. Within an enumeration, the members can be compared by identity, and
the enumeration itself can be iterated over.
A ``NamedTuple`` is a class-based, fixed-length tuple with a name for each
possible position accessible using attribute-access notation.
A ``NamedConstant`` is a class whose members cannot be rebound; it lacks all
other ``Enum`` capabilities, however; consequently, it can have duplicate
values. There is also a ``module`` function that can insert the
``NamedConstant`` class into ``sys.modules`` where it will appear to be a
module whose top-level names cannot be rebound.
.. note::
``constant`` refers to names not being rebound; mutable objects can be
mutated.
Module Contents
---------------
This module defines five enumeration classes that can be used to define unique
sets of names and values, one ``Enum`` class decorator, one ``NamedTuple``
class, one ``NamedConstant`` class, and several helpers.
``NamedConstant``
NamedConstant class for creating groups of constants. These names cannot be
rebound to other values.
``Enum``
Base class for creating enumerated constants. See section `Enum Functional API`_
for an alternate construction syntax.
``AddValue``
Flag specifying that ``_generate_next_value_`` should always be called to
provide the initial value for an enum member.
``MultiValue``
Flag specifying that each item of tuple value is a separate value for that
member; the first tuple item is the canonical one.
``NoAlias``
Flag specifying that duplicate valued members are distinct and not aliases;
by-value lookups are disabled.
``Unique``
Flag specifying that duplicate valued members are not allowed.
.. note::
The flags are inherited by the enumeration's subclasses. To use them in
Python 2 assign to ``_settings_`` in the class body.
``IntEnum``
Base class for creating enumerated constants that are also subclasses of ``int``.
``AutoNumberEnum``
Derived class that automatically assigns an ``int`` value to each member.
``OrderedEnum``
Derived class that adds ``<``, ``<=``, ``>=``, and ``>`` methods to an ``Enum``.
``UniqueEnum``
Derived class that ensures only one name is bound to any one value.
``unique``
Enum class decorator that ensures only one name is bound to any one value.
.. note::
the ``UniqueEnum`` class, the ``unique`` decorator, and the Unique
flag all do the same thing; you do not need to use more than one of
them at the same time.
``NamedTuple``
Base class for `creating NamedTuples`_, either by subclassing or via it's
functional API.
``constant``
Descriptor to add constant values to an ``Enum``, or advanced constants to
``NamedConstant``.
``convert``
Helper to transform target global variables into an ``Enum``.
``enum``
Helper for specifying keyword arguments when creating ``Enum`` members.
``export``
Helper for inserting ``Enum`` members and ``NamedConstant`` constants into a
namespace (usually ``globals()``.
``extend_enum``
Helper for adding new ``Enum`` members, both stdlib and aenum.
``module``
Function to take a ``NamedConstant`` or ``Enum`` class and insert it into
``sys.modules`` with the affect of a module whose top-level constant and
member names cannot be rebound.
``skip``
Descriptor to add a normal (non-``Enum`` member) attribute to an ``Enum``
or ``NamedConstant``.
Creating an Enum
----------------
Enumerations are created using the ``class`` syntax, which makes them
easy to read and write. An alternative creation method is described in
`Enum Functional API`_. To define an enumeration, subclass ``Enum`` as
follows::
>>> from aenum import Enum
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3
*Nomenclature*
- The class ``Color`` is an *enumeration* (or *enum*)
- The attributes ``Color.red``, ``Color.green``, etc., are
*enumeration members* (or *enum members*).
- The enum members have *names* and *values* (the name of
``Color.red`` is ``red``, the value of ``Color.blue`` is
``3``, etc.)
.. note::
Even though we use the ``class`` syntax to create Enums, Enums
are not normal Python classes. See `How are Enums different?`_ for
more details.
Enumeration members have human readable string representations::
>>> print(Color.red)
Color.red
...while their ``repr`` has more information::
>>> print(repr(Color.red))
<Color.red: 1>
The *type* of an enumeration member is the enumeration it belongs to::
>>> type(Color.red)
<aenum 'Color'>
>>> isinstance(Color.green, Color)
True
Enumerations support iteration. In Python 3.x definition order is used; in
Python 2.x the definition order is not available, but class attribute
``_order_`` is supported; otherwise, value order is used if posible,
otherwise alphabetical name order is used::
>>> class Shake(Enum):
... _order_ = 'vanilla chocolate cookies mint' # only needed in 2.x
... vanilla = 7
... chocolate = 4
... cookies = 9
... mint = 3
...
>>> for shake in Shake:
... print(shake)
...
Shake.vanilla
Shake.chocolate
Shake.cookies
Shake.mint
The ``_order_`` attribute is always removed, but in 3.x it is also used to
verify that definition order is the same (useful for py2&3 code bases);
however, in the stdlib version it will be ignored and not removed.
.. note::
To maintain compatibility with Python 3.4 and 3.5, use __order__
instead (double leading and trailing underscores).
Enumeration members are hashable, so they can be used in dictionaries and sets::
>>> apples = {}
>>> apples[Color.red] = 'red delicious'
>>> apples[Color.green] = 'granny smith'
>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
True
In Python 3 the class syntax has a few extra advancements::
--> class Color(
... Enum,
... settings=(AddValue, MultiValue, NoAlias, Unique),
... init='field_name1 field_name2 ...',
... start=7,
... )
...
``start`` is used to specify the starting value for the first member::
--> class Count(Enum, start=11):
... eleven
... twelve
...
--> Count.twelve.value == 12
True
``init`` specifies the attribute names to store creation values to::
--> class Planet(Enum, init='mass radius'):
... MERCURY = (3.303e+23, 2.4397e6)
... EARTH = (5.976e+24, 6.37814e6)
...
--> Planet.EARTH.value
(5.976e+24, 6378140.0)
--> Planet.EARTH.radius
2.4397e6
The various settings enable special behavior:
- ``AddValue`` calls a user supplied ``_generate_next_value_`` to provide
the initial value
- ``MultiValue`` allows multiple values per member instead of the usual 1
- ``NoAlias`` allows different members to have the same value
- ``Unique`` disallows different members to have the same value
.. note::
To use these features in Python 2 use the _sundered_ versions of
the names in the class body: ``_start_``, ``_init_``, ``_settings_``.
Programmatic access to enumeration members and their attributes
---------------------------------------------------------------
Sometimes it's useful to access members in enumerations programmatically (i.e.
situations where ``Color.red`` won't do because the exact color is not known
at program-writing time). ``Enum`` allows such access::
>>> Color(1)
<Color.red: 1>
>>> Color(3)
<Color.blue: 3>
If you want to access enum members by *name*, use item access::
>>> Color['red']
<Color.red: 1>
>>> Color['green']
<Color.green: 2>
If have an enum member and need its ``name`` or ``value``::
>>> member = Color.red
>>> member.name
'red'
>>> member.value
1
Duplicating enum members and values
-----------------------------------
Having two enum members (or any other attribute) with the same name is invalid;
in Python 3.x this would raise an error, but in Python 2.x the second member
simply overwrites the first::
# python 2.x
--> class Shape(Enum):
... square = 2
... square = 3
...
--> Shape.square
<Shape.square: 3>
# python 3.x
--> class Shape(Enum):
... square = 2
... square = 3
Traceback (most recent call last):
...
TypeError: Attempted to reuse key: 'square'
However, two enum members are allowed to have the same value. Given two members
A and B with the same value (and A defined first), B is an alias to A. By-value
lookup of the value of A and B will return A. By-name lookup of B will also
return A::
>>> class Shape(Enum):
... _order_ = 'square diamond circle' # needed in 2.x
... square = 2
... diamond = 1
... circle = 3
... alias_for_square = 2
...
>>> Shape.square
<Shape.square: 2>
>>> Shape.alias_for_square
<Shape.square: 2>
>>> Shape(2)
<Shape.square: 2>
Allowing aliases is not always desirable. ``unique`` can be used to ensure
that none exist in a particular enumeration::
>>> from aenum import unique
>>> @unique
... class Mistake(Enum):
... _order_ = 'one two three' # only needed in 2.x
... one = 1
... two = 2
... three = 3
... four = 3
Traceback (most recent call last):
...
ValueError: duplicate names found in <aenum 'Mistake'>: four -> three
Iterating over the members of an enum does not provide the aliases::
>>> list(Shape)
[<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]
The special attribute ``__members__`` is a dictionary mapping names to members.
It includes all names defined in the enumeration, including the aliases::
>>> for name, member in sorted(Shape.__members__.items()):
... name, member
...
('alias_for_square', <Shape.square: 2>)
('circle', <Shape.circle: 3>)
('diamond', <Shape.diamond: 1>)
('square', <Shape.square: 2>)
The ``__members__`` attribute can be used for detailed programmatic access to
the enumeration members. For example, finding all the aliases::
>>> [n for n, mbr in Shape.__members__.items() if mbr.name != n]
['alias_for_square']
Comparisons
-----------
Enumeration members are compared by identity::
>>> Color.red is Color.red
True
>>> Color.red is Color.blue
False
>>> Color.red is not Color.blue
True
Ordered comparisons between enumeration values are *not* supported. Enum
members are not integers (but see `IntEnum`_ below)::
>>> Color.red < Color.blue
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Color() < Color()
.. warning::
In Python 2 *everything* is ordered, even though the ordering may not
make sense. If you want your enumerations to have a sensible ordering
consider using an `OrderedEnum`_.
Equality comparisons are defined though::
>>> Color.blue == Color.red
False
>>> Color.blue != Color.red
True
>>> Color.blue == Color.blue
True
Comparisons against non-enumeration values will always compare not equal
(again, ``IntEnum`` was explicitly designed to behave differently, see
below)::
>>> Color.blue == 2
False
Allowed members and attributes of enumerations
----------------------------------------------
The examples above use integers for enumeration values. Using integers is
short and handy (and provided by default by the `Enum Functional API`_), but not
strictly enforced. In the vast majority of use-cases, one doesn't care what
the actual value of an enumeration is. But if the value *is* important,
enumerations can have arbitrary values.
Enumerations are Python classes, and can have methods and special methods as
usual. If we have this enumeration::
>>> class Mood(Enum):
... funky = 1
... happy = 3
...
... def describe(self):
... # self is the member here
... return self.name, self.value
...
... def __str__(self):
... return 'my custom str! {0}'.format(self.value)
...
... @classmethod
... def favorite_mood(cls):
... # cls here is the enumeration
... return cls.happy
Then::
>>> Mood.favorite_mood()
<Mood.happy: 3>
>>> Mood.happy.describe()
('happy', 3)
>>> str(Mood.funky)
'my custom str! 1'
The rules for what is allowed are as follows: _sunder_ names (starting and
ending with a single underscore) are reserved by enum and cannot be used;
all other attributes defined within an enumeration will become members of this
enumeration, with the exception of *__dunder__* names and descriptors (methods
are also descriptors).
.. note::
If your enumeration defines ``__new__`` and/or ``__init__`` then
whatever value(s) were given to the enum member will be passed into
those methods. See `Planet`_ for an example.
Restricted Enum subclassing
---------------------------
A new `Enum` class must have one base Enum class, up to one concrete
data type, and as many `object`-based mixin classes as needed. The
order of these base classes is::
def EnumName([mix-in, ...,] [data-type,] base-enum):
pass
Also, subclassing an enumeration is allowed only if the enumeration does not define
any members. So this is forbidden::
>>> class MoreColor(Color):
... pink = 17
Traceback (most recent call last):
...
TypeError: <aenum 'MoreColor'> cannot extend <aenum 'Color'>
But this is allowed::
>>> class Foo(Enum):
... def some_behavior(self):
... pass
...
>>> class Bar(Foo):
... happy = 1
... sad = 2
...
Allowing subclassing of enums that define members would lead to a violation of
some important invariants of types and instances. On the other hand, it makes
sense to allow sharing some common behavior between a group of enumerations.
(See `OrderedEnum`_ for an example.)
Pickling
--------
Enumerations can be pickled and unpickled::
>>> from aenum.test import Fruit
>>> from pickle import dumps, loads
>>> Fruit.tomato is loads(dumps(Fruit.tomato, 2))
True
The usual restrictions for pickling apply: picklable enums must be defined in
the top level of a module, since unpickling requires them to be importable
from that module.
.. note::
With pickle protocol version 4 (introduced in Python 3.4) it is possible
to easily pickle enums nested in other classes.
Enum Functional API
-------------------
The ``Enum`` class is callable, providing the following functional API::
>>> Animal = Enum('Animal', 'ant bee cat dog')
>>> Animal
<aenum 'Animal'>
>>> Animal.ant
<Animal.ant: 1>
>>> Animal.ant.value
1
>>> list(Animal)
[<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]
The semantics of this API resemble ``namedtuple``. The first argument
of the call to ``Enum`` is the name of the enumeration.
The second argument is the *source* of enumeration member names. It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values. The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1. A
new class derived from ``Enum`` is returned. In other words, the above
assignment to ``Animal`` is equivalent to::
>>> class Animals(Enum):
... ant = 1
... bee = 2
... cat = 3
... dog = 4
Pickling enums created with the functional API can be tricky as frame stack
implementation details are used to try and figure out which module the
enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython).
The solution is to specify the module name explicitly as follows::
>>> Animals = Enum('Animals', 'ant bee cat dog', module=__name__)
Derived Enumerations
--------------------
IntEnum
^^^^^^^
A variation of ``Enum`` is provided which is also a subclass of
``int``. Members of an ``IntEnum`` can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other::
>>> from aenum import IntEnum
>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Request(IntEnum):
... post = 1
... get = 2
...
>>> Shape == 1
False
>>> Shape.circle == 1
True
>>> Shape.circle == Request.post
True
However, they still can't be compared to standard ``Enum`` enumerations::
>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Color(Enum):
... red = 1
... green = 2
...
>>> Shape.circle == Color.red
False
``IntEnum`` values behave like integers in other ways you'd expect::
>>> int(Shape.circle)
1
>>> ['a', 'b', 'c'][Shape.circle]
'b'
>>> [i for i in range(Shape.square)]
[0, 1]
For the vast majority of code, ``Enum`` is strongly recommended,
since ``IntEnum`` breaks some semantic promises of an enumeration (by
being comparable to integers, and thus by transitivity to other
unrelated enumerations). It should be used only in special cases where
there's no other choice; for example, when integer constants are
replaced with enumerations and backwards compatibility is required with code
that still expects integers.
IntFlag
^^^^^^^
The next variation of ``Enum`` provided, ``IntFlag``, is also based
on ``int``. The difference being ``IntFlag`` members can be combined
using the bitwise operators (&, \|, ^, ~) and the result is still an
``IntFlag`` member. However, as the name implies, ``IntFlag``
members also subclass ``int`` and can be used wherever an ``int`` is
used. Any operation on an ``IntFlag`` member besides the bit-wise
operations will lose the ``IntFlag`` membership.
Sample ``IntFlag`` class::
>>> from aenum import IntFlag
>>> class Perm(IntFlag):
... _order_ = 'R W X'
... R = 4
... W = 2
... X = 1
...
>>> Perm.R | Perm.W
<Perm.R|W: 6>
>>> Perm.R + Perm.W
6
>>> RW = Perm.R | Perm.W
>>> Perm.R in RW
True
It is also possible to name the combinations::
>>> class Perm(IntFlag):
... _order_ = 'R W X'
... R = 4
... W = 2
... X = 1
... RWX = 7
>>> Perm.RWX
<Perm.RWX: 7>
>>> ~Perm.RWX
<Perm: 0>
Another important difference between ``IntFlag`` and ``Enum`` is that
if no flags are set (the value is 0), its boolean evaluation is ``False``::
>>> Perm.R & Perm.X
<Perm: 0>
>>> bool(Perm.R & Perm.X)
False
Because ``IntFlag`` members are also subclasses of ``int`` they can
be combined with them::
>>> Perm.X | 4
<Perm.R|X: 5>
If the result is not a ``Flag`` then, depending on the ``_boundary_`` setting,
an exception is raised (``STRICT``), the extra bits are lost (``CONFORM``), or
it reverts to an int (``EJECT``):
>>> from aenum import STRICT, CONFORM, EJECT
>>> Perm._boundary_ = STRICT
>>> Perm.X | 8
Traceback (most recent call last):
...
ValueError: 9 is not a valid Perm
>>> Perm._boundary_ = EJECT
>>> Perm.X | 8
9
>>> Perm._boundary_ = CONFORM
>>> Perm.X | 8
<Perm.X: 1>
Flag
^^^^
The last variation is ``Flag``. Like ``IntFlag``, ``Flag``
members can be combined using the bitwise operators (&, \|, ^, ~). Unlike
``IntFlag``, they cannot be combined with, nor compared against, any
other ``Flag`` enumeration, nor ``int``. While it is possible to
specify the values directly it is recommended to use ``auto`` as the
value and let ``Flag`` select an appropriate value.
Like ``IntFlag``, if a combination of ``Flag`` members results in no
flags being set, the boolean evaluation is ``False``::
>>> from aenum import Flag, auto
>>> class Color(Flag):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> Color.RED & Color.GREEN
<Color: 0>
>>> bool(Color.RED & Color.GREEN)
False
Individual flags should have values that are powers of two (1, 2, 4, 8, ...),
while combinations of flags won't::
--> class Color(Flag):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
... WHITE = RED | BLUE | GREEN
...
--> Color.WHITE
<Color.WHITE: 7>
Giving a name to the "no flags set" condition does not change its boolean
value::
>>> class Color(Flag):
... BLACK = 0
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> Color.BLACK
<Color.BLACK: 0>
>>> bool(Color.BLACK)
False
Flags can be iterated over to retrieve the individual truthy flags in the value::
>>> class Color(Flag):
... _order_ = 'BLACK RED BLUE GREEN WHITE'
... BLACK = 0
... RED = auto()
... BLUE = auto()
... GREEN = auto()
... WHITE = RED | BLUE | GREEN
...
>>> list(Color.GREEN)
[<Color.GREEN: 4>]
>>> list(Color.WHITE)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 4>]
.. note::
For the majority of new code, ``Enum`` and ``Flag`` are strongly
recommended, since ``IntEnum`` and ``IntFlag`` break some
semantic promises of an enumeration (by being comparable to integers, and
thus by transitivity to other unrelated enumerations). ``IntEnum``
and ``IntFlag`` should be used only in cases where ``Enum`` and
``Flag`` will not do; for example, when integer constants are replaced
with enumerations, or for interoperability with other systems.
Others
^^^^^^
While ``IntEnum`` is part of the ``aenum`` module, it would be very
simple to implement independently::
class MyIntEnum(int, Enum):
pass
This demonstrates how similar derived enumerations can be defined; for example
a ``MyStrEnum`` that mixes in ``str`` instead of ``int``.
Some rules:
1. When subclassing ``Enum``, mix-in types must appear before
``Enum`` itself in the sequence of bases, as in the ``MyIntEnum``
example above.
2. While ``Enum`` can have members of any type, once you mix in an
additional type, all the members must have values of that type or be
convertible into that type. This restriction does not apply to mix-ins
which only add methods and don't specify another data type.
3. When another data type is mixed in, the ``value`` attribute is *not the
same* as the enum member itself, although it is equivalant and will compare
equal.
4. %-style formatting: ``%s`` and ``%r`` call ``Enum``'s ``__str__`` and
``__repr__`` respectively; other codes (such as ``%i`` or ``%h`` for
MyIntEnum) treat the enum member as its mixed-in type.
5. ``str.__format__`` (or ``format``) will use the mixed-in
type's ``__format__``. If the ``Enum``'s ``str`` or ``repr`` is desired
use the ``!s`` or ``!r`` ``str`` format codes.
.. note::
If you override the ``__str__`` method, then it will be used to provide the
string portion of the ``format()`` call.
.. note::
Prior to Python 3.4 there is a bug in ``str``'s %-formatting: ``int``
subclasses are printed as strings and not numbers when the ``%d``, ``%i``,
or ``%u`` codes are used.
Extra Goodies
-------------
aenum supports a few extra techniques not found in the stdlib version.
enum
^^^^
If you have several items to initialize your ``Enum`` members with and
would like to use keyword arguments, the ``enum`` helper is for you::
>>> from aenum import enum
>>> class Presidents(Enum):
... Washington = enum('George Washington', circa=1776, death=1797)
... Jackson = enum('Andrew Jackson', circa=1830, death=1837)
... Lincoln = enum('Abraham Lincoln', circa=1860, death=1865)
...
>>> Presidents.Lincoln
<Presidents.Lincoln: enum('Abraham Lincoln', circa=1860, death=1865)>
extend_enum
^^^^^^^^^^^
For those rare cases when you need to create your ``Enum`` in pieces, you
can use ``extend_enum`` to add new members after the initial creation
(the new member is returned)::
>>> from aenum import extend_enum
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3
...
>>> list(Color)
[<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>]
>>> extend_enum(Color, 'opacity', 4)
<Color.opacity: 4>
>>> list(Color)
[<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>, <Color.opacity: 4>]
>>> Color.opacity in Color
True
>>> Color.opacity.name == 'opacity'
True
>>> Color.opacity.value == 4
True
>>> Color(4)
<Color.opacity: 4>
>>> Color['opacity']
<Color.opacity: 4>
--> Color.__members__
OrderedDict([
('red', <Color.red: 1>),
('green', <Color.green: 2>),
('blue', <Color.blue: 3>),
('opacity', <Color.opacity: 4>)
])
constant
^^^^^^^^
If you need to have some constant value in your ``Enum`` that isn't a member,
use ``constant``::
>>> from aenum import constant
>>> class Planet(Enum):
... MERCURY = (3.303e+23, 2.4397e6)
... EARTH = (5.976e+24, 6.37814e6)
... JUPITER = (1.9e+27, 7.1492e7)
... URANUS = (8.686e+25, 2.5559e7)
... G = constant(6.67300E-11)
... def __init__(self, mass, radius):
... self.mass = mass # in kilograms
... self.radius = radius # in meters
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... return self.G * self.mass / (self.radius * self.radius)
...
>>> Planet.EARTH.value
(5.976e+24, 6378140.0)
>>> Planet.EARTH.surface_gravity
9.802652743337129
>>> Planet.G
6.673e-11
>>> Planet.G = 9
Traceback (most recent call last):
...
AttributeError: Planet: cannot rebind constant 'G'
skip
^^^^
If you need a standard attribute that is not converted into an ``Enum``
member, use ``skip``::
>>> from aenum import skip
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3
... opacity = skip(0.45)
...
>>> Color.opacity
0.45
>>> Color.opacity = 0.77
>>> Color.opacity
0.77
start
^^^^^
``start`` can be used to turn on auto-numbering (useful for when you don't
care which numbers are assigned as long as they are consistent and in order)
The Python 3 version can look like this::
>>> class Color(Enum, start=1): # doctest: +SKIP
... red, green, blue
...
>>> Color.blue
<Color.blue: 3>
This can also be done in Python 2, albeit not as elegantly (this also works in
Python 3)::
>>> class Color(Enum): # doctest: +SKIP
... _start_ = 1
... red = auto()
... green = auto()
... blue = auto()
...
>>> Color.blue
<Color.blue: 3>
init
^^^^
If you need an ``__init__`` method that does nothing besides save its
arguments, ``init`` is for you::
>>> class Planet(Enum, init='mass radius'): # doctest: +SKIP
... MERCURY = (3.303e+23, 2.4397e6)
... EARTH = (5.976e+24, 6.37814e6)
... JUPITER = (1.9e+27, 7.1492e7)
... URANUS = (8.686e+25, 2.5559e7)
... G = constant(6.67300E-11)
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... return self.G * self.mass / (self.radius * self.radius)
...
>>> Planet.JUPITER.value
(1.9e+27, 71492000.0)
>>> Planet.JUPITER.mass
1.9e+27
.. note::
Just as with ``start`` above, in Python 2 you must put the keyword as a
_sunder_ in the class body -- ``_init_ = 'mass radius'``.
init and missing values
^^^^^^^^^^^^^^^^^^^^^^^
If ``_init_`` calls for values that are not supplied, ``_generate_next_value_``
will be called in an effort to generate them. Here is an example in Python 2::
>>> from aenum import Enum
>>> class SelectionEnum(Enum):
... _init_ = 'db user'
... def __new__(cls, *args, **kwds):
... count = len(cls.__members__)
... obj = object.__new__(cls)
... obj._count = count
... obj._value_ = args
... return obj
... @staticmethod
... def _generate_next_value_(name, start, count, values, *args, **kwds):
... return (name, ) + args
...
>>> class NotificationType(SelectionEnum):
... # usually, name is the same as db
... # but not for blanks
... blank = '', ''
... C = 'Catalog'
... S = 'Sheet'
... B = 'Both'
...
>>> NotificationType.blank
<NotificationType.blank: ('', '')>
>>> NotificationType.B
<NotificationType.B: ('B', 'Both')>
>>> NotificationType.B.db
'B'
>>> NotificationType.B.user
'Both'
combining Flag with other data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Flag does support being combined with other data types. To support this you
need to provide a ``_create_pseudo_member_values_`` method which will be called
with the members in a composite flag. You may also need to provide a custom
``__new__`` method::
>>> class AnsiFlag(str, Flag):
... def __new__(cls, value, code):
... str_value = '\x1b[%sm' % code
... obj = str.__new__(cls, str_value)
... obj._value_ = value
... obj.code = code
... return obj
... @classmethod
... def _create_pseudo_member_values_(cls, members, *values):
... code = ';'.join(m.code for m in members)
... return values + (code, )
... _order_ = 'FG_Red FG_Green BG_Magenta BG_White'
... FG_Red = '31' # ESC [ 31 m # red
... FG_Green = '32' # ESC [ 32 m # green
... BG_Magenta = '45' # ESC [ 35 m # magenta
... BG_White = '47' # ESC [ 37 m # white
...
>>> color = AnsiFlag.BG_White | AnsiFlag.FG_Red
>>> repr(color)
'<AnsiFlag.FG_Red|BG_White: 9>'
>>> str.__repr__(color)
"'\\x1b[31;47m'"
.. note::
If you do not provide your own ``_create_pseudo_member_values_`` the flags
may still combine, but may be missing functionality.
Decorators
----------
unique
^^^^^^
A ``class`` decorator specifically for enumerations. It searches an
enumeration's ``__members__`` gathering any aliases it finds; if any are
found ``ValueError`` is raised with the details::
>>> @unique
... class NoDupes(Enum):
... first = 'one'
... second = 'two'
... third = 'two'
Traceback (most recent call last):
...
ValueError: duplicate names found in <aenum 'NoDupes'>: third -> second
Interesting examples
--------------------
While ``Enum`` and ``IntEnum`` are expected to cover the majority of
use-cases, they cannot cover them all. Here are recipes for some different
types of enumerations that can be used directly (the first three are included
in the module), or as examples for creating one's own.
AutoNumber
^^^^^^^^^^
Avoids having to specify the value for each enumeration member::
>>> class AutoNumber(Enum):
... def __new__(cls):
... value = len(cls.__members__) + 1
... obj = object.__new__(cls)
... obj._value_ = value
... return obj
...
>>> class Color(AutoNumber):
... _order_ = "red green blue" # only needed in 2.x
... red = ()
... green = ()
... blue = ()
...
>>> Color.green.value == 2
True
.. note::
The `__new__` method, if defined, is used during creation of the Enum
members; it is then replaced by Enum's `__new__` which is used after
class creation for lookup of existing members. Due to the way Enums are
supposed to behave, there is no way to customize Enum's `__new__` without
modifying the class after it is created.
UniqueEnum
^^^^^^^^^^
Raises an error if a duplicate member name is found instead of creating an
alias::
>>> class UniqueEnum(Enum):
... def __init__(self, *args):
... cls = self.__class__
... if any(self.value == e.value for e in cls):
... a = self.name
... e = cls(self.value).name
... raise ValueError(
... "aliases not allowed in UniqueEnum: %r --> %r"
... % (a, e))
...
>>> class Color(UniqueEnum):
... _order_ = 'red green blue'
... red = 1
... green = 2
... blue = 3
... grene = 2
Traceback (most recent call last):
...
ValueError: aliases not allowed in UniqueEnum: 'grene' --> 'green'
OrderedEnum
^^^^^^^^^^^
An ordered enumeration that is not based on ``IntEnum`` and so maintains
the normal ``Enum`` invariants (such as not being comparable to other
enumerations)::
>>> class OrderedEnum(Enum):
... def __ge__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ >= other._value_
... return NotImplemented
... def __gt__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ > other._value_
... return NotImplemented
... def __le__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ <= other._value_
... return NotImplemented
... def __lt__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ < other._value_
... return NotImplemented
...
>>> class Grade(OrderedEnum):
... __ordered__ = 'A B C D F'
... A = 5
... B = 4
... C = 3
... D = 2
... F = 1
...
>>> Grade.C < Grade.A
True
Planet
^^^^^^
If ``__new__`` or ``__init__`` is defined the value of the enum member
will be passed to those methods::
>>> class Planet(Enum):
... MERCURY = (3.303e+23, 2.4397e6)
... VENUS = (4.869e+24, 6.0518e6)
... EARTH = (5.976e+24, 6.37814e6)
... MARS = (6.421e+23, 3.3972e6)
... JUPITER = (1.9e+27, 7.1492e7)
... SATURN = (5.688e+26, 6.0268e7)
... URANUS = (8.686e+25, 2.5559e7)
... NEPTUNE = (1.024e+26, 2.4746e7)
... def __init__(self, mass, radius):
... self.mass = mass # in kilograms
... self.radius = radius # in meters
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... G = 6.67300E-11
... return G * self.mass / (self.radius * self.radius)
...
>>> Planet.EARTH.value
(5.976e+24, 6378140.0)
>>> Planet.EARTH.surface_gravity
9.802652743337129
How are Enums different?
------------------------
Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).
Enum Classes
^^^^^^^^^^^^
The ``EnumMeta`` metaclass is responsible for providing the
``__contains__``, ``__dir__``, ``__iter__`` and other methods that
allow one to do things with an ``Enum`` class that fail on a typical
class, such as ``list(Color)`` or ``some_var in Color``. ``EnumMeta`` is
responsible for ensuring that various other methods on the final ``Enum``
class are correct (such as ``__new__``, ``__getnewargs__``,
``__str__`` and ``__repr__``).
.. note::
``__dir__`` is not changed in the Python 2 line as it messes up some
of the decorators included in the stdlib.
Enum Members (aka instances)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The most interesting thing about Enum members is that they are singletons.
``EnumMeta`` creates them all while it is creating the ``Enum``
class itself, and then puts a custom ``__new__`` in place to ensure
that no new ones are ever instantiated by returning only the existing
member instances.
Finer Points
^^^^^^^^^^^^
``Enum`` members are instances of an ``Enum`` class, and are
accessible as `EnumClass.member1.member2` -- but only if no other
constant/property exists::
>>> class FieldTypes(Enum):
... name = 1
... value = 2
... size = 3
...
>>> FieldTypes.size
<FieldTypes.size: 3>
>>> FieldTypes.value.size
<FieldTypes.size: 3>
>>> FieldTypes.size.value # NOT <FieldTypes.value: 2>
3
The ``__members__`` attribute is only available on the class.
``__members__`` is always an ``OrderedDict``, with the order being the
definition order in Python 3.x or the order in ``_order_`` in Python 2.7;
if no ``_order_`` was specified in Python 2.7 then the order of
``__members__`` is either increasing value or alphabetically by name.
If you give your ``Enum`` subclass extra methods, like the `Planet`_
class above, those methods will show up in a `dir` of the member,
but not of the class (in Python 3.x)::
--> dir(Planet)
['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS',
'VENUS', '__class__', '__doc__', '__members__', '__module__']
--> dir(Planet.EARTH)
['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']
A ``__new__`` method will only be used for the creation of the
``Enum`` members -- after that it is replaced. This means if you wish to
change how ``Enum`` members are looked up you either have to write a
helper function or a ``classmethod``.
.. note::
If you create your own ``__new__`` you should set the ``_value_`` in it;
if you do not, aenum will try to, but will raise a ``TypeError`` if it
cannot.
If the stdlib ``enum`` is available (Python 3.4+ and it hasn't been shadowed
by, for example, ``enum34``) then aenum will be a subclass of it.
To use the ``AddValue``, ``MultiValue``, ``NoAlias``, and ``Unique`` flags
in Py2 or Py2/Py3 codebases, use ``_settings_ = ...`` in the class body.
To use ``init`` in Py2 or Py2/Py3 codebases use ``_init_`` in the class body.
To use ``start`` in Py2 or Py2/Py3 codebases use ``_start_`` in the class body.
When creating class bodies dynamically, put any variables you need to use into
``_ignore_``::
>>> from datetime import timedelta
>>> from aenum import NoAlias
>>> class Period(timedelta, Enum):
... '''
... different lengths of time
... '''
... _init_ = 'value period'
... _settings_ = NoAlias
... _ignore_ = 'Period i'
... Period = vars()
... for i in range(31):
... Period['day_%d' % i] = i, 'day'
... for i in range(15):
... Period['week_%d' % i] = i*7, 'week'
...
>>> hasattr(Period, '_ignore_')
False
>>> hasattr(Period, 'Period')
False
>>> hasattr(Period, 'i')
False
The name listed in ``_ignore_``, as well as ``_ignore_`` itself, will not be
present in the final enumeration as neither attributes nor members.
.. note::
except for __dunder__ attributes/methods, all _sunder_ attributes must
be before any thing else in the class body
.. note::
all _sunder_ attributes that affect member creation are only looked up in
the last ``Enum`` class listed in the class header
Creating NamedTuples
--------------------
Simple
^^^^^^
The most common way to create a new NamedTuple will be via the functional API::
>>> from aenum import NamedTuple
>>> Book = NamedTuple('Book', 'title author genre', module=__name__)
This creates a ``NamedTuple`` called ``Book`` that will always contain three
items, each of which is also addressable as ``title``, ``author``, or ``genre``.
``Book`` instances can be created using positional or keyword argements or a
mixture of the two::
>>> b1 = Book('Lord of the Rings', 'J.R.R. Tolkien', 'fantasy')
>>> b2 = Book(title='Jhereg', author='Steven Brust', genre='fantasy')
>>> b3 = Book('Empire', 'Orson Scott Card', genre='scifi')
If too few or too many arguments are used a ``TypeError`` will be raised::
>>> b4 = Book('Hidden Empire')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): author, genre
>>> b5 = Book(genre='business')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): title, author
As a ``class`` the above ``Book`` ``NamedTuple`` would look like::
>>> class Book(NamedTuple):
... title = 0
... author = 1
... genre = 2
...
For compatibility with the stdlib ``namedtuple``, NamedTuple also has the
``_asdict``, ``_make``, and ``_replace`` methods, and the ``_fields``
attribute, which all function similarly::
>>> class Point(NamedTuple):
... x = 0, 'horizontal coordinate', 1
... y = 1, 'vertical coordinate', -1
...
>>> class Color(NamedTuple):
... r = 0, 'red component', 11
... g = 1, 'green component', 29
... b = 2, 'blue component', 37
...
>>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
>>> pixel = Pixel(99, -101, 255, 128, 0)
>>> pixel._asdict()
OrderedDict([('x', 99), ('y', -101), ('r', 255), ('g', 128), ('b', 0)])
>>> Point._make((4, 5))
Point(x=4, y=5)
>>> purple = Color(127, 0, 127)
>>> mid_gray = purple._replace(g=127)
>>> mid_gray
Color(r=127, g=127, b=127)
>>> pixel._fields
['x', 'y', 'r', 'g', 'b']
>>> Pixel._fields
['x', 'y', 'r', 'g', 'b']
Advanced
^^^^^^^^
The simple method of creating ``NamedTuples`` requires always specifying all
possible arguments when creating instances; failure to do so will raise
exceptions::
>>> class Point(NamedTuple):
... x = 0
... y = 1
...
>>> Point()
Traceback (most recent call last):
...
TypeError: values not provided for field(s): x, y
>>> Point(1)
Traceback (most recent call last):
...
TypeError: values not provided for field(s): y
>>> Point(y=2)
Traceback (most recent call last):
...
TypeError: values not provided for field(s): x
However, it is possible to specify both docstrings and default values when
creating a ``NamedTuple`` using the class method::
>>> class Point(NamedTuple):
... x = 0, 'horizontal coordinate', 0
... y = 1, 'vertical coordinate', 0
...
>>> Point()
Point(x=0, y=0)
>>> Point(1)
Point(x=1, y=0)
>>> Point(y=2)
Point(x=0, y=2)
It is also possible to create ``NamedTuples`` that only have named attributes
for certain fields; any fields without names can still be accessed by index::
>>> class Person(NamedTuple):
... fullname = 2
... phone = 5
...
>>> p = Person('Ethan', 'Furman', 'Ethan Furman',
... 'ethan at stoneleaf dot us',
... 'ethan.furman', '999.555.1212')
>>> p
Person('Ethan', 'Furman', 'Ethan Furman', 'ethan at stoneleaf dot us',
'ethan.furman', '999.555.1212')
>>> p.fullname
'Ethan Furman'
>>> p.phone
'999.555.1212'
>>> p[0]
'Ethan'
In the above example the last named field was also the last field possible; in
those cases where you don't need to have the last possible field named, you can
provide a ``_size_`` of ``TupleSize.minimum`` to declare that more fields are
okay::
>>> from aenum import TupleSize
>>> class Person(NamedTuple):
... _size_ = TupleSize.minimum
... first = 0
... last = 1
...
or, optionally if using Python 3::
>>> class Person(NamedTuple, size=TupleSize.minimum): # doctest: +SKIP
... first = 0
... last = 1
and in use::
>>> Person('Ethan', 'Furman')
Person(first='Ethan', last='Furman')
>>> Person('Ethan', 'Furman', 'ethan.furman')
Person('Ethan', 'Furman', 'ethan.furman')
>>> Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')
Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')
>>> Person('Ethan')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): last
Also, for those cases where even named fields may not be present, you can
specify ``TupleSize.variable``::
>>> class Person(NamedTuple):
... _size_ = TupleSize.variable
... first = 0
... last = 1
...
>>> Person('Ethan')
Person('Ethan')
>>> Person(last='Furman')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): first
Creating new ``NamedTuples`` from existing ``NamedTuples`` is simple::
>>> Point = NamedTuple('Point', 'x y')
>>> Color = NamedTuple('Color', 'r g b')
>>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
>>> Pixel
<NamedTuple 'Pixel'>
The existing fields in the bases classes are renumbered to fit the new class,
but keep their doc strings and default values. If you use standard
subclassing::
>>> Point = NamedTuple('Point', 'x y')
>>> class Pixel(Point):
... r = 2, 'red component', 11
... g = 3, 'green component', 29
... b = 4, 'blue component', 37
...
>>> Pixel.__fields__
['x', 'y', 'r', 'g', 'b']
You must manage the numbering yourself.
Creating NamedConstants
-----------------------
A ``NamedConstant`` class is created much like an ``Enum``::
>>> from aenum import NamedConstant
>>> class Konstant(NamedConstant):
... PI = 3.14159
... TAU = 2 * PI
>>> Konstant.PI
<Konstant.PI: 3.14159>
>> print(Konstant.PI)
3.14159
>>> Konstant.PI = 'apple'
Traceback (most recent call last):
...
AttributeError: cannot rebind constant <Konstant.PI>
>>> del Konstant.PI
Traceback (most recent call last):
...
AttributeError: cannot delete constant <Konstant.PI>
|