Spaces:
Sleeping
Sleeping
File size: 38,020 Bytes
ffaa9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
# -*- coding: utf-8 -*-
# Copyright (c) 2013, Mahmoud Hashemi
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * The names of the contributors may not be used to endorse or
# promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Python has a very powerful mapping type at its core: the :class:`dict`
type. While versatile and featureful, the :class:`dict` prioritizes
simplicity and performance. As a result, it does not retain the order
of item insertion [1]_, nor does it store multiple values per key. It
is a fast, unordered 1:1 mapping.
The :class:`OrderedMultiDict` contrasts to the built-in :class:`dict`,
as a relatively maximalist, ordered 1:n subtype of
:class:`dict`. Virtually every feature of :class:`dict` has been
retooled to be intuitive in the face of this added
complexity. Additional methods have been added, such as
:class:`collections.Counter`-like functionality.
A prime advantage of the :class:`OrderedMultiDict` (OMD) is its
non-destructive nature. Data can be added to an :class:`OMD` without being
rearranged or overwritten. The property can allow the developer to
work more freely with the data, as well as make more assumptions about
where input data will end up in the output, all without any extra
work.
One great example of this is the :meth:`OMD.inverted()` method, which
returns a new OMD with the values as keys and the keys as values. All
the data and the respective order is still represented in the inverted
form, all from an operation which would be outright wrong and reckless
with a built-in :class:`dict` or :class:`collections.OrderedDict`.
The OMD has been performance tuned to be suitable for a wide range of
usages, including as a basic unordered MultiDict. Special
thanks to `Mark Williams`_ for all his help.
.. [1] As of 2015, `basic dicts on PyPy are ordered
<http://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html>`_,
and as of December 2017, `basic dicts in CPython 3 are now ordered
<https://mail.python.org/pipermail/python-dev/2017-December/151283.html>`_, as
well.
.. _Mark Williams: https://github.com/markrwilliams
"""
try:
from collections.abc import KeysView, ValuesView, ItemsView
except ImportError:
from collections import KeysView, ValuesView, ItemsView
import itertools
try:
from itertools import izip_longest
except ImportError:
from itertools import zip_longest as izip_longest
try:
from .typeutils import make_sentinel
_MISSING = make_sentinel(var_name='_MISSING')
except ImportError:
_MISSING = object()
PREV, NEXT, KEY, VALUE, SPREV, SNEXT = range(6)
__all__ = ['MultiDict', 'OMD', 'OrderedMultiDict', 'OneToOne', 'ManyToMany', 'subdict', 'FrozenDict']
try:
profile
except NameError:
profile = lambda x: x
class OrderedMultiDict(dict):
"""A MultiDict is a dictionary that can have multiple values per key
and the OrderedMultiDict (OMD) is a MultiDict that retains
original insertion order. Common use cases include:
* handling query strings parsed from URLs
* inverting a dictionary to create a reverse index (values to keys)
* stacking data from multiple dictionaries in a non-destructive way
The OrderedMultiDict constructor is identical to the built-in
:class:`dict`, and overall the API constitutes an intuitive
superset of the built-in type:
>>> omd = OrderedMultiDict()
>>> omd['a'] = 1
>>> omd['b'] = 2
>>> omd.add('a', 3)
>>> omd.get('a')
3
>>> omd.getlist('a')
[1, 3]
Some non-:class:`dict`-like behaviors also make an appearance,
such as support for :func:`reversed`:
>>> list(reversed(omd))
['b', 'a']
Note that unlike some other MultiDicts, this OMD gives precedence
to the most recent value added. ``omd['a']`` refers to ``3``, not
``1``.
>>> omd
OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)])
>>> omd.poplast('a')
3
>>> omd
OrderedMultiDict([('a', 1), ('b', 2)])
>>> omd.pop('a')
1
>>> omd
OrderedMultiDict([('b', 2)])
If you want a safe-to-modify or flat dictionary, use
:meth:`OrderedMultiDict.todict()`.
>>> from pprint import pprint as pp # preserve printed ordering
>>> omd = OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)])
>>> pp(omd.todict())
{'a': 3, 'b': 2}
>>> pp(omd.todict(multi=True))
{'a': [1, 3], 'b': [2]}
With ``multi=False``, items appear with the keys in to original
insertion order, alongside the most-recently inserted value for
that key.
>>> OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)]).items(multi=False)
[('a', 3), ('b', 2)]
.. warning::
``dict(omd)`` changed behavior `in Python 3.7
<https://bugs.python.org/issue34320>`_ due to changes made to
support the transition from :class:`collections.OrderedDict` to
the built-in dictionary being ordered. Before 3.7, the result
would be a new dictionary, with values that were lists, similar
to ``omd.todict(multi=True)`` (but only shallow-copy; the lists
were direct references to OMD internal structures). From 3.7
onward, the values became singular, like
``omd.todict(multi=False)``. For reliable cross-version
behavior, just use :meth:`~OrderedMultiDict.todict()`.
"""
def __init__(self, *args, **kwargs):
if len(args) > 1:
raise TypeError('%s expected at most 1 argument, got %s'
% (self.__class__.__name__, len(args)))
super(OrderedMultiDict, self).__init__()
self._clear_ll()
if args:
self.update_extend(args[0])
if kwargs:
self.update(kwargs)
def _clear_ll(self):
try:
_map = self._map
except AttributeError:
_map = self._map = {}
self.root = []
_map.clear()
self.root[:] = [self.root, self.root, None]
def _insert(self, k, v):
root = self.root
cells = self._map.setdefault(k, [])
last = root[PREV]
cell = [last, root, k, v]
last[NEXT] = root[PREV] = cell
cells.append(cell)
def add(self, k, v):
"""Add a single value *v* under a key *k*. Existing values under *k*
are preserved.
"""
values = super(OrderedMultiDict, self).setdefault(k, [])
self._insert(k, v)
values.append(v)
def addlist(self, k, v):
"""Add an iterable of values underneath a specific key, preserving
any values already under that key.
>>> omd = OrderedMultiDict([('a', -1)])
>>> omd.addlist('a', range(3))
>>> omd
OrderedMultiDict([('a', -1), ('a', 0), ('a', 1), ('a', 2)])
Called ``addlist`` for consistency with :meth:`getlist`, but
tuples and other sequences and iterables work.
"""
if not v:
return
self_insert = self._insert
values = super(OrderedMultiDict, self).setdefault(k, [])
for subv in v:
self_insert(k, subv)
values.extend(v)
def get(self, k, default=None):
"""Return the value for key *k* if present in the dictionary, else
*default*. If *default* is not given, ``None`` is returned.
This method never raises a :exc:`KeyError`.
To get all values under a key, use :meth:`OrderedMultiDict.getlist`.
"""
return super(OrderedMultiDict, self).get(k, [default])[-1]
def getlist(self, k, default=_MISSING):
"""Get all values for key *k* as a list, if *k* is in the
dictionary, else *default*. The list returned is a copy and
can be safely mutated. If *default* is not given, an empty
:class:`list` is returned.
"""
try:
return super(OrderedMultiDict, self).__getitem__(k)[:]
except KeyError:
if default is _MISSING:
return []
return default
def clear(self):
"Empty the dictionary."
super(OrderedMultiDict, self).clear()
self._clear_ll()
def setdefault(self, k, default=_MISSING):
"""If key *k* is in the dictionary, return its value. If not, insert
*k* with a value of *default* and return *default*. *default*
defaults to ``None``. See :meth:`dict.setdefault` for more
information.
"""
if not super(OrderedMultiDict, self).__contains__(k):
self[k] = None if default is _MISSING else default
return self[k]
def copy(self):
"Return a shallow copy of the dictionary."
return self.__class__(self.iteritems(multi=True))
@classmethod
def fromkeys(cls, keys, default=None):
"""Create a dictionary from a list of keys, with all the values
set to *default*, or ``None`` if *default* is not set.
"""
return cls([(k, default) for k in keys])
def update(self, E, **F):
"""Add items from a dictionary or iterable (and/or keyword arguments),
overwriting values under an existing key. See
:meth:`dict.update` for more details.
"""
# E and F are throwback names to the dict() __doc__
if E is self:
return
self_add = self.add
if isinstance(E, OrderedMultiDict):
for k in E:
if k in self:
del self[k]
for k, v in E.iteritems(multi=True):
self_add(k, v)
elif callable(getattr(E, 'keys', None)):
for k in E.keys():
self[k] = E[k]
else:
seen = set()
seen_add = seen.add
for k, v in E:
if k not in seen and k in self:
del self[k]
seen_add(k)
self_add(k, v)
for k in F:
self[k] = F[k]
return
def update_extend(self, E, **F):
"""Add items from a dictionary, iterable, and/or keyword
arguments without overwriting existing items present in the
dictionary. Like :meth:`update`, but adds to existing keys
instead of overwriting them.
"""
if E is self:
iterator = iter(E.items())
elif isinstance(E, OrderedMultiDict):
iterator = E.iteritems(multi=True)
elif hasattr(E, 'keys'):
iterator = ((k, E[k]) for k in E.keys())
else:
iterator = E
self_add = self.add
for k, v in iterator:
self_add(k, v)
def __setitem__(self, k, v):
if super(OrderedMultiDict, self).__contains__(k):
self._remove_all(k)
self._insert(k, v)
super(OrderedMultiDict, self).__setitem__(k, [v])
def __getitem__(self, k):
return super(OrderedMultiDict, self).__getitem__(k)[-1]
def __delitem__(self, k):
super(OrderedMultiDict, self).__delitem__(k)
self._remove_all(k)
def __eq__(self, other):
if self is other:
return True
try:
if len(other) != len(self):
return False
except TypeError:
return False
if isinstance(other, OrderedMultiDict):
selfi = self.iteritems(multi=True)
otheri = other.iteritems(multi=True)
zipped_items = izip_longest(selfi, otheri, fillvalue=(None, None))
for (selfk, selfv), (otherk, otherv) in zipped_items:
if selfk != otherk or selfv != otherv:
return False
if not(next(selfi, _MISSING) is _MISSING
and next(otheri, _MISSING) is _MISSING):
# leftovers (TODO: watch for StopIteration?)
return False
return True
elif hasattr(other, 'keys'):
for selfk in self:
try:
other[selfk] == self[selfk]
except KeyError:
return False
return True
return False
def __ne__(self, other):
return not (self == other)
def pop(self, k, default=_MISSING):
"""Remove all values under key *k*, returning the most-recently
inserted value. Raises :exc:`KeyError` if the key is not
present and no *default* is provided.
"""
try:
return self.popall(k)[-1]
except KeyError:
if default is _MISSING:
raise KeyError(k)
return default
def popall(self, k, default=_MISSING):
"""Remove all values under key *k*, returning them in the form of
a list. Raises :exc:`KeyError` if the key is not present and no
*default* is provided.
"""
super_self = super(OrderedMultiDict, self)
if super_self.__contains__(k):
self._remove_all(k)
if default is _MISSING:
return super_self.pop(k)
return super_self.pop(k, default)
def poplast(self, k=_MISSING, default=_MISSING):
"""Remove and return the most-recently inserted value under the key
*k*, or the most-recently inserted key if *k* is not
provided. If no values remain under *k*, it will be removed
from the OMD. Raises :exc:`KeyError` if *k* is not present in
the dictionary, or the dictionary is empty.
"""
if k is _MISSING:
if self:
k = self.root[PREV][KEY]
else:
if default is _MISSING:
raise KeyError('empty %r' % type(self))
return default
try:
self._remove(k)
except KeyError:
if default is _MISSING:
raise KeyError(k)
return default
values = super(OrderedMultiDict, self).__getitem__(k)
v = values.pop()
if not values:
super(OrderedMultiDict, self).__delitem__(k)
return v
def _remove(self, k):
values = self._map[k]
cell = values.pop()
cell[PREV][NEXT], cell[NEXT][PREV] = cell[NEXT], cell[PREV]
if not values:
del self._map[k]
def _remove_all(self, k):
values = self._map[k]
while values:
cell = values.pop()
cell[PREV][NEXT], cell[NEXT][PREV] = cell[NEXT], cell[PREV]
del self._map[k]
def iteritems(self, multi=False):
"""Iterate over the OMD's items in insertion order. By default,
yields only the most-recently inserted value for each key. Set
*multi* to ``True`` to get all inserted items.
"""
root = self.root
curr = root[NEXT]
if multi:
while curr is not root:
yield curr[KEY], curr[VALUE]
curr = curr[NEXT]
else:
for key in self.iterkeys():
yield key, self[key]
def iterkeys(self, multi=False):
"""Iterate over the OMD's keys in insertion order. By default, yields
each key once, according to the most recent insertion. Set
*multi* to ``True`` to get all keys, including duplicates, in
insertion order.
"""
root = self.root
curr = root[NEXT]
if multi:
while curr is not root:
yield curr[KEY]
curr = curr[NEXT]
else:
yielded = set()
yielded_add = yielded.add
while curr is not root:
k = curr[KEY]
if k not in yielded:
yielded_add(k)
yield k
curr = curr[NEXT]
def itervalues(self, multi=False):
"""Iterate over the OMD's values in insertion order. By default,
yields the most-recently inserted value per unique key. Set
*multi* to ``True`` to get all values according to insertion
order.
"""
for k, v in self.iteritems(multi=multi):
yield v
def todict(self, multi=False):
"""Gets a basic :class:`dict` of the items in this dictionary. Keys
are the same as the OMD, values are the most recently inserted
values for each key.
Setting the *multi* arg to ``True`` is yields the same
result as calling :class:`dict` on the OMD, except that all the
value lists are copies that can be safely mutated.
"""
if multi:
return dict([(k, self.getlist(k)) for k in self])
return dict([(k, self[k]) for k in self])
def sorted(self, key=None, reverse=False):
"""Similar to the built-in :func:`sorted`, except this method returns
a new :class:`OrderedMultiDict` sorted by the provided key
function, optionally reversed.
Args:
key (callable): A callable to determine the sort key of
each element. The callable should expect an **item**
(key-value pair tuple).
reverse (bool): Set to ``True`` to reverse the ordering.
>>> omd = OrderedMultiDict(zip(range(3), range(3)))
>>> omd.sorted(reverse=True)
OrderedMultiDict([(2, 2), (1, 1), (0, 0)])
Note that the key function receives an **item** (key-value
tuple), so the recommended signature looks like:
>>> omd = OrderedMultiDict(zip('hello', 'world'))
>>> omd.sorted(key=lambda i: i[1]) # i[0] is the key, i[1] is the val
OrderedMultiDict([('o', 'd'), ('l', 'l'), ('e', 'o'), ('l', 'r'), ('h', 'w')])
"""
cls = self.__class__
return cls(sorted(self.iteritems(multi=True), key=key, reverse=reverse))
def sortedvalues(self, key=None, reverse=False):
"""Returns a copy of the :class:`OrderedMultiDict` with the same keys
in the same order as the original OMD, but the values within
each keyspace have been sorted according to *key* and
*reverse*.
Args:
key (callable): A single-argument callable to determine
the sort key of each element. The callable should expect
an **item** (key-value pair tuple).
reverse (bool): Set to ``True`` to reverse the ordering.
>>> omd = OrderedMultiDict()
>>> omd.addlist('even', [6, 2])
>>> omd.addlist('odd', [1, 5])
>>> omd.add('even', 4)
>>> omd.add('odd', 3)
>>> somd = omd.sortedvalues()
>>> somd.getlist('even')
[2, 4, 6]
>>> somd.keys(multi=True) == omd.keys(multi=True)
True
>>> omd == somd
False
>>> somd
OrderedMultiDict([('even', 2), ('even', 4), ('odd', 1), ('odd', 3), ('even', 6), ('odd', 5)])
As demonstrated above, contents and key order are
retained. Only value order changes.
"""
try:
superself_iteritems = super(OrderedMultiDict, self).iteritems()
except AttributeError:
superself_iteritems = super(OrderedMultiDict, self).items()
# (not reverse) because they pop off in reverse order for reinsertion
sorted_val_map = dict([(k, sorted(v, key=key, reverse=(not reverse)))
for k, v in superself_iteritems])
ret = self.__class__()
for k in self.iterkeys(multi=True):
ret.add(k, sorted_val_map[k].pop())
return ret
def inverted(self):
"""Returns a new :class:`OrderedMultiDict` with values and keys
swapped, like creating dictionary transposition or reverse
index. Insertion order is retained and all keys and values
are represented in the output.
>>> omd = OMD([(0, 2), (1, 2)])
>>> omd.inverted().getlist(2)
[0, 1]
Inverting twice yields a copy of the original:
>>> omd.inverted().inverted()
OrderedMultiDict([(0, 2), (1, 2)])
"""
return self.__class__((v, k) for k, v in self.iteritems(multi=True))
def counts(self):
"""Returns a mapping from key to number of values inserted under that
key. Like :py:class:`collections.Counter`, but returns a new
:class:`OrderedMultiDict`.
"""
# Returns an OMD because Counter/OrderedDict may not be
# available, and neither Counter nor dict maintain order.
super_getitem = super(OrderedMultiDict, self).__getitem__
return self.__class__((k, len(super_getitem(k))) for k in self)
def keys(self, multi=False):
"""Returns a list containing the output of :meth:`iterkeys`. See
that method's docs for more details.
"""
return list(self.iterkeys(multi=multi))
def values(self, multi=False):
"""Returns a list containing the output of :meth:`itervalues`. See
that method's docs for more details.
"""
return list(self.itervalues(multi=multi))
def items(self, multi=False):
"""Returns a list containing the output of :meth:`iteritems`. See
that method's docs for more details.
"""
return list(self.iteritems(multi=multi))
def __iter__(self):
return self.iterkeys()
def __reversed__(self):
root = self.root
curr = root[PREV]
lengths = {}
lengths_sd = lengths.setdefault
get_values = super(OrderedMultiDict, self).__getitem__
while curr is not root:
k = curr[KEY]
vals = get_values(k)
if lengths_sd(k, 1) == len(vals):
yield k
lengths[k] += 1
curr = curr[PREV]
def __repr__(self):
cn = self.__class__.__name__
kvs = ', '.join([repr((k, v)) for k, v in self.iteritems(multi=True)])
return '%s([%s])' % (cn, kvs)
def viewkeys(self):
"OMD.viewkeys() -> a set-like object providing a view on OMD's keys"
return KeysView(self)
def viewvalues(self):
"OMD.viewvalues() -> an object providing a view on OMD's values"
return ValuesView(self)
def viewitems(self):
"OMD.viewitems() -> a set-like object providing a view on OMD's items"
return ItemsView(self)
# A couple of convenient aliases
OMD = OrderedMultiDict
MultiDict = OrderedMultiDict
class FastIterOrderedMultiDict(OrderedMultiDict):
"""An OrderedMultiDict backed by a skip list. Iteration over keys
is faster and uses constant memory but adding duplicate key-value
pairs is slower. Brainchild of Mark Williams.
"""
def _clear_ll(self):
# TODO: always reset objects? (i.e., no else block below)
try:
_map = self._map
except AttributeError:
_map = self._map = {}
self.root = []
_map.clear()
self.root[:] = [self.root, self.root,
None, None,
self.root, self.root]
def _insert(self, k, v):
root = self.root
empty = []
cells = self._map.setdefault(k, empty)
last = root[PREV]
if cells is empty:
cell = [last, root,
k, v,
last, root]
# was the last one skipped?
if last[SPREV][SNEXT] is root:
last[SPREV][SNEXT] = cell
last[NEXT] = last[SNEXT] = root[PREV] = root[SPREV] = cell
cells.append(cell)
else:
# if the previous was skipped, go back to the cell that
# skipped it
sprev = last[SPREV] if (last[SPREV][SNEXT] is not last) else last
cell = [last, root,
k, v,
sprev, root]
# skip me
last[SNEXT] = root
last[NEXT] = root[PREV] = root[SPREV] = cell
cells.append(cell)
def _remove(self, k):
cells = self._map[k]
cell = cells.pop()
if not cells:
del self._map[k]
cell[PREV][SNEXT] = cell[SNEXT]
if cell[PREV][SPREV][SNEXT] is cell:
cell[PREV][SPREV][SNEXT] = cell[NEXT]
elif cell[SNEXT] is cell[NEXT]:
cell[SPREV][SNEXT], cell[SNEXT][SPREV] = cell[SNEXT], cell[SPREV]
cell[PREV][NEXT], cell[NEXT][PREV] = cell[NEXT], cell[PREV]
def _remove_all(self, k):
cells = self._map.pop(k)
while cells:
cell = cells.pop()
if cell[PREV][SPREV][SNEXT] is cell:
cell[PREV][SPREV][SNEXT] = cell[NEXT]
elif cell[SNEXT] is cell[NEXT]:
cell[SPREV][SNEXT], cell[SNEXT][SPREV] = cell[SNEXT], cell[SPREV]
cell[PREV][NEXT], cell[NEXT][PREV] = cell[NEXT], cell[PREV]
cell[PREV][SNEXT] = cell[SNEXT]
def iteritems(self, multi=False):
next_link = NEXT if multi else SNEXT
root = self.root
curr = root[next_link]
while curr is not root:
yield curr[KEY], curr[VALUE]
curr = curr[next_link]
def iterkeys(self, multi=False):
next_link = NEXT if multi else SNEXT
root = self.root
curr = root[next_link]
while curr is not root:
yield curr[KEY]
curr = curr[next_link]
def __reversed__(self):
root = self.root
curr = root[PREV]
while curr is not root:
if curr[SPREV][SNEXT] is not curr:
curr = curr[SPREV]
if curr is root:
break
yield curr[KEY]
curr = curr[PREV]
_OTO_INV_MARKER = object()
_OTO_UNIQUE_MARKER = object()
class OneToOne(dict):
"""Implements a one-to-one mapping dictionary. In addition to
inheriting from and behaving exactly like the builtin
:class:`dict`, all values are automatically added as keys on a
reverse mapping, available as the `inv` attribute. This
arrangement keeps key and value namespaces distinct.
Basic operations are intuitive:
>>> oto = OneToOne({'a': 1, 'b': 2})
>>> print(oto['a'])
1
>>> print(oto.inv[1])
a
>>> len(oto)
2
Overwrites happens in both directions:
>>> oto.inv[1] = 'c'
>>> print(oto.get('a'))
None
>>> len(oto)
2
For a very similar project, with even more one-to-one
functionality, check out `bidict <https://github.com/jab/bidict>`_.
"""
__slots__ = ('inv',)
def __init__(self, *a, **kw):
raise_on_dupe = False
if a:
if a[0] is _OTO_INV_MARKER:
self.inv = a[1]
dict.__init__(self, [(v, k) for k, v in self.inv.items()])
return
elif a[0] is _OTO_UNIQUE_MARKER:
a, raise_on_dupe = a[1:], True
dict.__init__(self, *a, **kw)
self.inv = self.__class__(_OTO_INV_MARKER, self)
if len(self) == len(self.inv):
# if lengths match, that means everything's unique
return
if not raise_on_dupe:
dict.clear(self)
dict.update(self, [(v, k) for k, v in self.inv.items()])
return
# generate an error message if the values aren't 1:1
val_multidict = {}
for k, v in self.items():
val_multidict.setdefault(v, []).append(k)
dupes = dict([(v, k_list) for v, k_list in
val_multidict.items() if len(k_list) > 1])
raise ValueError('expected unique values, got multiple keys for'
' the following values: %r' % dupes)
@classmethod
def unique(cls, *a, **kw):
"""This alternate constructor for OneToOne will raise an exception
when input values overlap. For instance:
>>> OneToOne.unique({'a': 1, 'b': 1})
Traceback (most recent call last):
...
ValueError: expected unique values, got multiple keys for the following values: ...
This even works across inputs:
>>> a_dict = {'a': 2}
>>> OneToOne.unique(a_dict, b=2)
Traceback (most recent call last):
...
ValueError: expected unique values, got multiple keys for the following values: ...
"""
return cls(_OTO_UNIQUE_MARKER, *a, **kw)
def __setitem__(self, key, val):
hash(val) # ensure val is a valid key
if key in self:
dict.__delitem__(self.inv, self[key])
if val in self.inv:
del self.inv[val]
dict.__setitem__(self, key, val)
dict.__setitem__(self.inv, val, key)
def __delitem__(self, key):
dict.__delitem__(self.inv, self[key])
dict.__delitem__(self, key)
def clear(self):
dict.clear(self)
dict.clear(self.inv)
def copy(self):
return self.__class__(self)
def pop(self, key, default=_MISSING):
if key in self:
dict.__delitem__(self.inv, self[key])
return dict.pop(self, key)
if default is not _MISSING:
return default
raise KeyError()
def popitem(self):
key, val = dict.popitem(self)
dict.__delitem__(self.inv, val)
return key, val
def setdefault(self, key, default=None):
if key not in self:
self[key] = default
return self[key]
def update(self, dict_or_iterable, **kw):
if isinstance(dict_or_iterable, dict):
for val in dict_or_iterable.values():
hash(val)
keys_vals = list(dict_or_iterable.items())
else:
for key, val in dict_or_iterable:
hash(key)
hash(val)
keys_vals = list(dict_or_iterable)
for val in kw.values():
hash(val)
keys_vals.extend(kw.items())
for key, val in keys_vals:
self[key] = val
def __repr__(self):
cn = self.__class__.__name__
dict_repr = dict.__repr__(self)
return "%s(%s)" % (cn, dict_repr)
# marker for the secret handshake used internally to set up the invert ManyToMany
_PAIRING = object()
class ManyToMany(object):
"""
a dict-like entity that represents a many-to-many relationship
between two groups of objects
behaves like a dict-of-tuples; also has .inv which is kept
up to date which is a dict-of-tuples in the other direction
also, can be used as a directed graph among hashable python objects
"""
def __init__(self, items=None):
self.data = {}
if type(items) is tuple and items and items[0] is _PAIRING:
self.inv = items[1]
else:
self.inv = self.__class__((_PAIRING, self))
if items:
self.update(items)
return
def get(self, key, default=frozenset()):
try:
return self[key]
except KeyError:
return default
def __getitem__(self, key):
return frozenset(self.data[key])
def __setitem__(self, key, vals):
vals = set(vals)
if key in self:
to_remove = self.data[key] - vals
vals -= self.data[key]
for val in to_remove:
self.remove(key, val)
for val in vals:
self.add(key, val)
def __delitem__(self, key):
for val in self.data.pop(key):
self.inv.data[val].remove(key)
if not self.inv.data[val]:
del self.inv.data[val]
def update(self, iterable):
"""given an iterable of (key, val), add them all"""
if type(iterable) is type(self):
other = iterable
for k in other.data:
if k not in self.data:
self.data[k] = other.data[k]
else:
self.data[k].update(other.data[k])
for k in other.inv.data:
if k not in self.inv.data:
self.inv.data[k] = other.inv.data[k]
else:
self.inv.data[k].update(other.inv.data[k])
elif callable(getattr(iterable, 'keys', None)):
for k in iterable.keys():
self.add(k, iterable[k])
else:
for key, val in iterable:
self.add(key, val)
return
def add(self, key, val):
if key not in self.data:
self.data[key] = set()
self.data[key].add(val)
if val not in self.inv.data:
self.inv.data[val] = set()
self.inv.data[val].add(key)
def remove(self, key, val):
self.data[key].remove(val)
if not self.data[key]:
del self.data[key]
self.inv.data[val].remove(key)
if not self.inv.data[val]:
del self.inv.data[val]
def replace(self, key, newkey):
"""
replace instances of key by newkey
"""
if key not in self.data:
return
self.data[newkey] = fwdset = self.data.pop(key)
for val in fwdset:
revset = self.inv.data[val]
revset.remove(key)
revset.add(newkey)
def iteritems(self):
for key in self.data:
for val in self.data[key]:
yield key, val
def keys(self):
return self.data.keys()
def __contains__(self, key):
return key in self.data
def __iter__(self):
return self.data.__iter__()
def __len__(self):
return self.data.__len__()
def __eq__(self, other):
return type(self) == type(other) and self.data == other.data
def __repr__(self):
cn = self.__class__.__name__
return '%s(%r)' % (cn, list(self.iteritems()))
def subdict(d, keep=None, drop=None):
"""Compute the "subdictionary" of a dict, *d*.
A subdict is to a dict what a subset is a to set. If *A* is a
subdict of *B*, that means that all keys of *A* are present in
*B*.
Returns a new dict with any keys in *drop* removed, and any keys
in *keep* still present, provided they were in the original
dict. *keep* defaults to all keys, *drop* defaults to empty, so
without one of these arguments, calling this function is
equivalent to calling ``dict()``.
>>> from pprint import pprint as pp
>>> pp(subdict({'a': 1, 'b': 2}))
{'a': 1, 'b': 2}
>>> subdict({'a': 1, 'b': 2, 'c': 3}, drop=['b', 'c'])
{'a': 1}
>>> pp(subdict({'a': 1, 'b': 2, 'c': 3}, keep=['a', 'c']))
{'a': 1, 'c': 3}
"""
if keep is None:
keep = d.keys()
if drop is None:
drop = []
keys = set(keep) - set(drop)
return type(d)([(k, v) for k, v in d.items() if k in keys])
class FrozenHashError(TypeError):
pass
class FrozenDict(dict):
"""An immutable dict subtype that is hashable and can itself be used
as a :class:`dict` key or :class:`set` entry. What
:class:`frozenset` is to :class:`set`, FrozenDict is to
:class:`dict`.
There was once an attempt to introduce such a type to the standard
library, but it was rejected: `PEP 416 <https://www.python.org/dev/peps/pep-0416/>`_.
Because FrozenDict is a :class:`dict` subtype, it automatically
works everywhere a dict would, including JSON serialization.
"""
__slots__ = ('_hash',)
def updated(self, *a, **kw):
"""Make a copy and add items from a dictionary or iterable (and/or
keyword arguments), overwriting values under an existing
key. See :meth:`dict.update` for more details.
"""
data = dict(self)
data.update(*a, **kw)
return type(self)(data)
@classmethod
def fromkeys(cls, keys, value=None):
# one of the lesser known and used/useful dict methods
return cls(dict.fromkeys(keys, value))
def __repr__(self):
cn = self.__class__.__name__
return '%s(%s)' % (cn, dict.__repr__(self))
def __reduce_ex__(self, protocol):
return type(self), (dict(self),)
def __hash__(self):
try:
ret = self._hash
except AttributeError:
try:
ret = self._hash = hash(frozenset(self.items()))
except Exception as e:
ret = self._hash = FrozenHashError(e)
if ret.__class__ is FrozenHashError:
raise ret
return ret
def __copy__(self):
return self # immutable types don't copy, see tuple's behavior
# block everything else
def _raise_frozen_typeerror(self, *a, **kw):
"raises a TypeError, because FrozenDicts are immutable"
raise TypeError('%s object is immutable' % self.__class__.__name__)
__ior__ = __setitem__ = __delitem__ = update = _raise_frozen_typeerror
setdefault = pop = popitem = clear = _raise_frozen_typeerror
del _raise_frozen_typeerror
# end dictutils.py
|