SD / Lib /site-packages /boltons /iterutils.py
DrFetWartz's picture
Upload folder using huggingface_hub
ffaa9fc
# -*- coding: utf-8 -*-
# Copyright (c) 2013, Mahmoud Hashemi
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * The names of the contributors may not be used to endorse or
# promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
""":mod:`itertools` is full of great examples of Python generator
usage. However, there are still some critical gaps. ``iterutils``
fills many of those gaps with featureful, tested, and Pythonic
solutions.
Many of the functions below have two versions, one which
returns an iterator (denoted by the ``*_iter`` naming pattern), and a
shorter-named convenience form that returns a list. Some of the
following are based on examples in itertools docs.
"""
import os
import math
import time
import codecs
import random
import itertools
try:
from collections.abc import Mapping, Sequence, Set, ItemsView, Iterable
except ImportError:
from collections import Mapping, Sequence, Set, ItemsView, Iterable
try:
from .typeutils import make_sentinel
_UNSET = make_sentinel('_UNSET')
_REMAP_EXIT = make_sentinel('_REMAP_EXIT')
except ImportError:
_REMAP_EXIT = object()
_UNSET = object()
try:
from future_builtins import filter
from itertools import izip
_IS_PY3 = False
except ImportError:
# Python 3 compat
_IS_PY3 = True
basestring = (str, bytes)
unicode = str
izip, xrange = zip, range
def is_iterable(obj):
"""Similar in nature to :func:`callable`, ``is_iterable`` returns
``True`` if an object is `iterable`_, ``False`` if not.
>>> is_iterable([])
True
>>> is_iterable(object())
False
.. _iterable: https://docs.python.org/2/glossary.html#term-iterable
"""
try:
iter(obj)
except TypeError:
return False
return True
def is_scalar(obj):
"""A near-mirror of :func:`is_iterable`. Returns ``False`` if an
object is an iterable container type. Strings are considered
scalar as well, because strings are more often treated as whole
values as opposed to iterables of 1-character substrings.
>>> is_scalar(object())
True
>>> is_scalar(range(10))
False
>>> is_scalar('hello')
True
"""
return not is_iterable(obj) or isinstance(obj, basestring)
def is_collection(obj):
"""The opposite of :func:`is_scalar`. Returns ``True`` if an object
is an iterable other than a string.
>>> is_collection(object())
False
>>> is_collection(range(10))
True
>>> is_collection('hello')
False
"""
return is_iterable(obj) and not isinstance(obj, basestring)
def split(src, sep=None, maxsplit=None):
"""Splits an iterable based on a separator. Like :meth:`str.split`,
but for all iterables. Returns a list of lists.
>>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None])
[['hi', 'hello'], ['sup'], ['soap']]
See :func:`split_iter` docs for more info.
"""
return list(split_iter(src, sep, maxsplit))
def split_iter(src, sep=None, maxsplit=None):
"""Splits an iterable based on a separator, *sep*, a max of
*maxsplit* times (no max by default). *sep* can be:
* a single value
* an iterable of separators
* a single-argument callable that returns True when a separator is
encountered
``split_iter()`` yields lists of non-separator values. A separator will
never appear in the output.
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None]))
[['hi', 'hello'], ['sup'], ['soap']]
Note that ``split_iter`` is based on :func:`str.split`, so if
*sep* is ``None``, ``split()`` **groups** separators. If empty lists
are desired between two contiguous ``None`` values, simply use
``sep=[None]``:
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None]))
[['hi', 'hello'], ['sup']]
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None]))
[['hi', 'hello'], [], ['sup'], []]
Using a callable separator:
>>> falsy_sep = lambda x: not x
>>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep))
[['hi', 'hello'], [], ['sup'], []]
See :func:`split` for a list-returning version.
"""
if not is_iterable(src):
raise TypeError('expected an iterable')
if maxsplit is not None:
maxsplit = int(maxsplit)
if maxsplit == 0:
yield [src]
return
if callable(sep):
sep_func = sep
elif not is_scalar(sep):
sep = frozenset(sep)
sep_func = lambda x: x in sep
else:
sep_func = lambda x: x == sep
cur_group = []
split_count = 0
for s in src:
if maxsplit is not None and split_count >= maxsplit:
sep_func = lambda x: False
if sep_func(s):
if sep is None and not cur_group:
# If sep is none, str.split() "groups" separators
# check the str.split() docs for more info
continue
split_count += 1
yield cur_group
cur_group = []
else:
cur_group.append(s)
if cur_group or sep is not None:
yield cur_group
return
def lstrip(iterable, strip_value=None):
"""Strips values from the beginning of an iterable. Stripped items will
match the value of the argument strip_value. Functionality is analogous
to that of the method str.lstrip. Returns a list.
>>> lstrip(['Foo', 'Bar', 'Bam'], 'Foo')
['Bar', 'Bam']
"""
return list(lstrip_iter(iterable, strip_value))
def lstrip_iter(iterable, strip_value=None):
"""Strips values from the beginning of an iterable. Stripped items will
match the value of the argument strip_value. Functionality is analogous
to that of the method str.lstrip. Returns a generator.
>>> list(lstrip_iter(['Foo', 'Bar', 'Bam'], 'Foo'))
['Bar', 'Bam']
"""
iterator = iter(iterable)
for i in iterator:
if i != strip_value:
yield i
break
for i in iterator:
yield i
def rstrip(iterable, strip_value=None):
"""Strips values from the end of an iterable. Stripped items will
match the value of the argument strip_value. Functionality is analogous
to that of the method str.rstrip. Returns a list.
>>> rstrip(['Foo', 'Bar', 'Bam'], 'Bam')
['Foo', 'Bar']
"""
return list(rstrip_iter(iterable,strip_value))
def rstrip_iter(iterable, strip_value=None):
"""Strips values from the end of an iterable. Stripped items will
match the value of the argument strip_value. Functionality is analogous
to that of the method str.rstrip. Returns a generator.
>>> list(rstrip_iter(['Foo', 'Bar', 'Bam'], 'Bam'))
['Foo', 'Bar']
"""
iterator = iter(iterable)
for i in iterator:
if i == strip_value:
cache = list()
cache.append(i)
broken = False
for i in iterator:
if i == strip_value:
cache.append(i)
else:
broken = True
break
if not broken: # Return to caller here because the end of the
return # iterator has been reached
for t in cache:
yield t
yield i
def strip(iterable, strip_value=None):
"""Strips values from the beginning and end of an iterable. Stripped items
will match the value of the argument strip_value. Functionality is
analogous to that of the method str.strip. Returns a list.
>>> strip(['Fu', 'Foo', 'Bar', 'Bam', 'Fu'], 'Fu')
['Foo', 'Bar', 'Bam']
"""
return list(strip_iter(iterable,strip_value))
def strip_iter(iterable,strip_value=None):
"""Strips values from the beginning and end of an iterable. Stripped items
will match the value of the argument strip_value. Functionality is
analogous to that of the method str.strip. Returns a generator.
>>> list(strip_iter(['Fu', 'Foo', 'Bar', 'Bam', 'Fu'], 'Fu'))
['Foo', 'Bar', 'Bam']
"""
return rstrip_iter(lstrip_iter(iterable,strip_value),strip_value)
def chunked(src, size, count=None, **kw):
"""Returns a list of *count* chunks, each with *size* elements,
generated from iterable *src*. If *src* is not evenly divisible by
*size*, the final chunk will have fewer than *size* elements.
Provide the *fill* keyword argument to provide a pad value and
enable padding, otherwise no padding will take place.
>>> chunked(range(10), 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> chunked(range(10), 3, fill=None)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
>>> chunked(range(10), 3, count=2)
[[0, 1, 2], [3, 4, 5]]
See :func:`chunked_iter` for more info.
"""
chunk_iter = chunked_iter(src, size, **kw)
if count is None:
return list(chunk_iter)
else:
return list(itertools.islice(chunk_iter, count))
def _validate_positive_int(value, name, strictly_positive=True):
value = int(value)
if value < 0 or (strictly_positive and value == 0):
raise ValueError('expected a positive integer ' + name)
return value
def chunked_iter(src, size, **kw):
"""Generates *size*-sized chunks from *src* iterable. Unless the
optional *fill* keyword argument is provided, iterables not evenly
divisible by *size* will have a final chunk that is smaller than
*size*.
>>> list(chunked_iter(range(10), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(chunked_iter(range(10), 3, fill=None))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
Note that ``fill=None`` in fact uses ``None`` as the fill value.
"""
# TODO: add count kwarg?
if not is_iterable(src):
raise TypeError('expected an iterable')
size = _validate_positive_int(size, 'chunk size')
do_fill = True
try:
fill_val = kw.pop('fill')
except KeyError:
do_fill = False
fill_val = None
if kw:
raise ValueError('got unexpected keyword arguments: %r' % kw.keys())
if not src:
return
postprocess = lambda chk: chk
if isinstance(src, basestring):
postprocess = lambda chk, _sep=type(src)(): _sep.join(chk)
if _IS_PY3 and isinstance(src, bytes):
postprocess = lambda chk: bytes(chk)
src_iter = iter(src)
while True:
cur_chunk = list(itertools.islice(src_iter, size))
if not cur_chunk:
break
lc = len(cur_chunk)
if lc < size and do_fill:
cur_chunk[lc:] = [fill_val] * (size - lc)
yield postprocess(cur_chunk)
return
def chunk_ranges(input_size, chunk_size, input_offset=0, overlap_size=0, align=False):
"""Generates *chunk_size*-sized chunk ranges for an input with length *input_size*.
Optionally, a start of the input can be set via *input_offset*, and
and overlap between the chunks may be specified via *overlap_size*.
Also, if *align* is set to *True*, any items with *i % (chunk_size-overlap_size) == 0*
are always at the beginning of the chunk.
Returns an iterator of (start, end) tuples, one tuple per chunk.
>>> list(chunk_ranges(input_offset=10, input_size=10, chunk_size=5))
[(10, 15), (15, 20)]
>>> list(chunk_ranges(input_offset=10, input_size=10, chunk_size=5, overlap_size=1))
[(10, 15), (14, 19), (18, 20)]
>>> list(chunk_ranges(input_offset=10, input_size=10, chunk_size=5, overlap_size=2))
[(10, 15), (13, 18), (16, 20)]
>>> list(chunk_ranges(input_offset=4, input_size=15, chunk_size=5, align=False))
[(4, 9), (9, 14), (14, 19)]
>>> list(chunk_ranges(input_offset=4, input_size=15, chunk_size=5, align=True))
[(4, 5), (5, 10), (10, 15), (15, 19)]
>>> list(chunk_ranges(input_offset=2, input_size=15, chunk_size=5, overlap_size=1, align=False))
[(2, 7), (6, 11), (10, 15), (14, 17)]
>>> list(chunk_ranges(input_offset=2, input_size=15, chunk_size=5, overlap_size=1, align=True))
[(2, 5), (4, 9), (8, 13), (12, 17)]
>>> list(chunk_ranges(input_offset=3, input_size=15, chunk_size=5, overlap_size=1, align=True))
[(3, 5), (4, 9), (8, 13), (12, 17), (16, 18)]
"""
input_size = _validate_positive_int(input_size, 'input_size', strictly_positive=False)
chunk_size = _validate_positive_int(chunk_size, 'chunk_size')
input_offset = _validate_positive_int(input_offset, 'input_offset', strictly_positive=False)
overlap_size = _validate_positive_int(overlap_size, 'overlap_size', strictly_positive=False)
input_stop = input_offset + input_size
if align:
initial_chunk_len = chunk_size - input_offset % (chunk_size - overlap_size)
if initial_chunk_len != overlap_size:
yield (input_offset, min(input_offset + initial_chunk_len, input_stop))
if input_offset + initial_chunk_len >= input_stop:
return
input_offset = input_offset + initial_chunk_len - overlap_size
for i in range(input_offset, input_stop, chunk_size - overlap_size):
yield (i, min(i + chunk_size, input_stop))
if i + chunk_size >= input_stop:
return
def pairwise(src):
"""Convenience function for calling :func:`windowed` on *src*, with
*size* set to 2.
>>> pairwise(range(5))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> pairwise([])
[]
The number of pairs is always one less than the number of elements
in the iterable passed in, except on empty inputs, which returns
an empty list.
"""
return windowed(src, 2)
def pairwise_iter(src):
"""Convenience function for calling :func:`windowed_iter` on *src*,
with *size* set to 2.
>>> list(pairwise_iter(range(5)))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> list(pairwise_iter([]))
[]
The number of pairs is always one less than the number of elements
in the iterable passed in, or zero, when *src* is empty.
"""
return windowed_iter(src, 2)
def windowed(src, size):
"""Returns tuples with exactly length *size*. If the iterable is
too short to make a window of length *size*, no tuples are
returned. See :func:`windowed_iter` for more.
"""
return list(windowed_iter(src, size))
def windowed_iter(src, size):
"""Returns tuples with length *size* which represent a sliding
window over iterable *src*.
>>> list(windowed_iter(range(7), 3))
[(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
If the iterable is too short to make a window of length *size*,
then no window tuples are returned.
>>> list(windowed_iter(range(3), 5))
[]
"""
# TODO: lists? (for consistency)
tees = itertools.tee(src, size)
try:
for i, t in enumerate(tees):
for _ in xrange(i):
next(t)
except StopIteration:
return izip([])
return izip(*tees)
def xfrange(stop, start=None, step=1.0):
"""Same as :func:`frange`, but generator-based instead of returning a
list.
>>> tuple(xfrange(1, 3, step=0.75))
(1.0, 1.75, 2.5)
See :func:`frange` for more details.
"""
if not step:
raise ValueError('step must be non-zero')
if start is None:
start, stop = 0.0, stop * 1.0
else:
# swap when all args are used
stop, start = start * 1.0, stop * 1.0
cur = start
while cur < stop:
yield cur
cur += step
def frange(stop, start=None, step=1.0):
"""A :func:`range` clone for float-based ranges.
>>> frange(5)
[0.0, 1.0, 2.0, 3.0, 4.0]
>>> frange(6, step=1.25)
[0.0, 1.25, 2.5, 3.75, 5.0]
>>> frange(100.5, 101.5, 0.25)
[100.5, 100.75, 101.0, 101.25]
>>> frange(5, 0)
[]
>>> frange(5, 0, step=-1.25)
[5.0, 3.75, 2.5, 1.25]
"""
if not step:
raise ValueError('step must be non-zero')
if start is None:
start, stop = 0.0, stop * 1.0
else:
# swap when all args are used
stop, start = start * 1.0, stop * 1.0
count = int(math.ceil((stop - start) / step))
ret = [None] * count
if not ret:
return ret
ret[0] = start
for i in xrange(1, count):
ret[i] = ret[i - 1] + step
return ret
def backoff(start, stop, count=None, factor=2.0, jitter=False):
"""Returns a list of geometrically-increasing floating-point numbers,
suitable for usage with `exponential backoff`_. Exactly like
:func:`backoff_iter`, but without the ``'repeat'`` option for
*count*. See :func:`backoff_iter` for more details.
.. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff
>>> backoff(1, 10)
[1.0, 2.0, 4.0, 8.0, 10.0]
"""
if count == 'repeat':
raise ValueError("'repeat' supported in backoff_iter, not backoff")
return list(backoff_iter(start, stop, count=count,
factor=factor, jitter=jitter))
def backoff_iter(start, stop, count=None, factor=2.0, jitter=False):
"""Generates a sequence of geometrically-increasing floats, suitable
for usage with `exponential backoff`_. Starts with *start*,
increasing by *factor* until *stop* is reached, optionally
stopping iteration once *count* numbers are yielded. *factor*
defaults to 2. In general retrying with properly-configured
backoff creates a better-behaved component for a larger service
ecosystem.
.. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff
>>> list(backoff_iter(1.0, 10.0, count=5))
[1.0, 2.0, 4.0, 8.0, 10.0]
>>> list(backoff_iter(1.0, 10.0, count=8))
[1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0]
>>> list(backoff_iter(0.25, 100.0, factor=10))
[0.25, 2.5, 25.0, 100.0]
A simplified usage example:
.. code-block:: python
for timeout in backoff_iter(0.25, 5.0):
try:
res = network_call()
break
except Exception as e:
log(e)
time.sleep(timeout)
An enhancement for large-scale systems would be to add variation,
or *jitter*, to timeout values. This is done to avoid a thundering
herd on the receiving end of the network call.
Finally, for *count*, the special value ``'repeat'`` can be passed to
continue yielding indefinitely.
Args:
start (float): Positive number for baseline.
stop (float): Positive number for maximum.
count (int): Number of steps before stopping
iteration. Defaults to the number of steps between *start* and
*stop*. Pass the string, `'repeat'`, to continue iteration
indefinitely.
factor (float): Rate of exponential increase. Defaults to `2.0`,
e.g., `[1, 2, 4, 8, 16]`.
jitter (float): A factor between `-1.0` and `1.0`, used to
uniformly randomize and thus spread out timeouts in a distributed
system, avoiding rhythm effects. Positive values use the base
backoff curve as a maximum, negative values use the curve as a
minimum. Set to 1.0 or `True` for a jitter approximating
Ethernet's time-tested backoff solution. Defaults to `False`.
"""
start = float(start)
stop = float(stop)
factor = float(factor)
if start < 0.0:
raise ValueError('expected start >= 0, not %r' % start)
if factor < 1.0:
raise ValueError('expected factor >= 1.0, not %r' % factor)
if stop == 0.0:
raise ValueError('expected stop >= 0')
if stop < start:
raise ValueError('expected stop >= start, not %r' % stop)
if count is None:
denom = start if start else 1
count = 1 + math.ceil(math.log(stop/denom, factor))
count = count if start else count + 1
if count != 'repeat' and count < 0:
raise ValueError('count must be positive or "repeat", not %r' % count)
if jitter:
jitter = float(jitter)
if not (-1.0 <= jitter <= 1.0):
raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter)
cur, i = start, 0
while count == 'repeat' or i < count:
if not jitter:
cur_ret = cur
elif jitter:
cur_ret = cur - (cur * jitter * random.random())
yield cur_ret
i += 1
if cur == 0:
cur = 1
elif cur < stop:
cur *= factor
if cur > stop:
cur = stop
return
def bucketize(src, key=bool, value_transform=None, key_filter=None):
"""Group values in the *src* iterable by the value returned by *key*.
>>> bucketize(range(5))
{False: [0], True: [1, 2, 3, 4]}
>>> is_odd = lambda x: x % 2 == 1
>>> bucketize(range(5), is_odd)
{False: [0, 2, 4], True: [1, 3]}
*key* is :class:`bool` by default, but can either be a callable or a string or a list
if it is a string, it is the name of the attribute on which to bucketize objects.
>>> bucketize([1+1j, 2+2j, 1, 2], key='real')
{1.0: [(1+1j), 1], 2.0: [(2+2j), 2]}
if *key* is a list, it contains the buckets where to put each object
>>> bucketize([1,2,365,4,98],key=[0,1,2,0,2])
{0: [1, 4], 1: [2], 2: [365, 98]}
Value lists are not deduplicated:
>>> bucketize([None, None, None, 'hello'])
{False: [None, None, None], True: ['hello']}
Bucketize into more than 3 groups
>>> bucketize(range(10), lambda x: x % 3)
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}
``bucketize`` has a couple of advanced options useful in certain
cases. *value_transform* can be used to modify values as they are
added to buckets, and *key_filter* will allow excluding certain
buckets from being collected.
>>> bucketize(range(5), value_transform=lambda x: x*x)
{False: [0], True: [1, 4, 9, 16]}
>>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
{0: [0, 3, 6, 9], 2: [2, 5, 8]}
Note in some of these examples there were at most two keys, ``True`` and
``False``, and each key present has a list with at least one
item. See :func:`partition` for a version specialized for binary
use cases.
"""
if not is_iterable(src):
raise TypeError('expected an iterable')
elif isinstance(key, list):
if len(key) != len(src):
raise ValueError("key and src have to be the same length")
src = zip(key, src)
if isinstance(key, basestring):
key_func = lambda x: getattr(x, key, x)
elif callable(key):
key_func = key
elif isinstance(key, list):
key_func = lambda x: x[0]
else:
raise TypeError('expected key to be callable or a string or a list')
if value_transform is None:
value_transform = lambda x: x
if not callable(value_transform):
raise TypeError('expected callable value transform function')
if isinstance(key, list):
f = value_transform
value_transform=lambda x: f(x[1])
ret = {}
for val in src:
key_of_val = key_func(val)
if key_filter is None or key_filter(key_of_val):
ret.setdefault(key_of_val, []).append(value_transform(val))
return ret
def partition(src, key=bool):
"""No relation to :meth:`str.partition`, ``partition`` is like
:func:`bucketize`, but for added convenience returns a tuple of
``(truthy_values, falsy_values)``.
>>> nonempty, empty = partition(['', '', 'hi', '', 'bye'])
>>> nonempty
['hi', 'bye']
*key* defaults to :class:`bool`, but can be carefully overridden to
use either a function that returns either ``True`` or ``False`` or
a string name of the attribute on which to partition objects.
>>> import string
>>> is_digit = lambda x: x in string.digits
>>> decimal_digits, hexletters = partition(string.hexdigits, is_digit)
>>> ''.join(decimal_digits), ''.join(hexletters)
('0123456789', 'abcdefABCDEF')
"""
bucketized = bucketize(src, key)
return bucketized.get(True, []), bucketized.get(False, [])
def unique(src, key=None):
"""``unique()`` returns a list of unique values, as determined by
*key*, in the order they first appeared in the input iterable,
*src*.
>>> ones_n_zeros = '11010110001010010101010'
>>> ''.join(unique(ones_n_zeros))
'10'
See :func:`unique_iter` docs for more details.
"""
return list(unique_iter(src, key))
def unique_iter(src, key=None):
"""Yield unique elements from the iterable, *src*, based on *key*,
in the order in which they first appeared in *src*.
>>> repetitious = [1, 2, 3] * 10
>>> list(unique_iter(repetitious))
[1, 2, 3]
By default, *key* is the object itself, but *key* can either be a
callable or, for convenience, a string name of the attribute on
which to uniqueify objects, falling back on identity when the
attribute is not present.
>>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes']
>>> list(unique_iter(pleasantries, key=lambda x: len(x)))
['hi', 'hello', 'bye']
"""
if not is_iterable(src):
raise TypeError('expected an iterable, not %r' % type(src))
if key is None:
key_func = lambda x: x
elif callable(key):
key_func = key
elif isinstance(key, basestring):
key_func = lambda x: getattr(x, key, x)
else:
raise TypeError('"key" expected a string or callable, not %r' % key)
seen = set()
for i in src:
k = key_func(i)
if k not in seen:
seen.add(k)
yield i
return
def redundant(src, key=None, groups=False):
"""The complement of :func:`unique()`.
By default returns non-unique/duplicate values as a list of the
*first* redundant value in *src*. Pass ``groups=True`` to get
groups of all values with redundancies, ordered by position of the
first redundant value. This is useful in conjunction with some
normalizing *key* function.
>>> redundant([1, 2, 3, 4])
[]
>>> redundant([1, 2, 3, 2, 3, 3, 4])
[2, 3]
>>> redundant([1, 2, 3, 2, 3, 3, 4], groups=True)
[[2, 2], [3, 3, 3]]
An example using a *key* function to do case-insensitive
redundancy detection.
>>> redundant(['hi', 'Hi', 'HI', 'hello'], key=str.lower)
['Hi']
>>> redundant(['hi', 'Hi', 'HI', 'hello'], groups=True, key=str.lower)
[['hi', 'Hi', 'HI']]
*key* should also be used when the values in *src* are not hashable.
.. note::
This output of this function is designed for reporting
duplicates in contexts when a unique input is desired. Due to
the grouped return type, there is no streaming equivalent of
this function for the time being.
"""
if key is None:
pass
elif callable(key):
key_func = key
elif isinstance(key, basestring):
key_func = lambda x: getattr(x, key, x)
else:
raise TypeError('"key" expected a string or callable, not %r' % key)
seen = {} # key to first seen item
redundant_order = []
redundant_groups = {}
for i in src:
k = key_func(i) if key else i
if k not in seen:
seen[k] = i
else:
if k in redundant_groups:
if groups:
redundant_groups[k].append(i)
else:
redundant_order.append(k)
redundant_groups[k] = [seen[k], i]
if not groups:
ret = [redundant_groups[k][1] for k in redundant_order]
else:
ret = [redundant_groups[k] for k in redundant_order]
return ret
def one(src, default=None, key=None):
"""Along the same lines as builtins, :func:`all` and :func:`any`, and
similar to :func:`first`, ``one()`` returns the single object in
the given iterable *src* that evaluates to ``True``, as determined
by callable *key*. If unset, *key* defaults to :class:`bool`. If
no such objects are found, *default* is returned. If *default* is
not passed, ``None`` is returned.
If *src* has more than one object that evaluates to ``True``, or
if there is no object that fulfills such condition, return
*default*. It's like an `XOR`_ over an iterable.
>>> one((True, False, False))
True
>>> one((True, False, True))
>>> one((0, 0, 'a'))
'a'
>>> one((0, False, None))
>>> one((True, True), default=False)
False
>>> bool(one(('', 1)))
True
>>> one((10, 20, 30, 42), key=lambda i: i > 40)
42
See `Martín Gaitán's original repo`_ for further use cases.
.. _Martín Gaitán's original repo: https://github.com/mgaitan/one
.. _XOR: https://en.wikipedia.org/wiki/Exclusive_or
"""
ones = list(itertools.islice(filter(key, src), 2))
return ones[0] if len(ones) == 1 else default
def first(iterable, default=None, key=None):
"""Return first element of *iterable* that evaluates to ``True``, else
return ``None`` or optional *default*. Similar to :func:`one`.
>>> first([0, False, None, [], (), 42])
42
>>> first([0, False, None, [], ()]) is None
True
>>> first([0, False, None, [], ()], default='ohai')
'ohai'
>>> import re
>>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
>>> m.group(1)
'bc'
The optional *key* argument specifies a one-argument predicate function
like that used for *filter()*. The *key* argument, if supplied, should be
in keyword form. For example, finding the first even number in an iterable:
>>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
4
Contributed by Hynek Schlawack, author of `the original standalone module`_.
.. _the original standalone module: https://github.com/hynek/first
"""
return next(filter(key, iterable), default)
def flatten_iter(iterable):
"""``flatten_iter()`` yields all the elements from *iterable* while
collapsing any nested iterables.
>>> nested = [[1, 2], [[3], [4, 5]]]
>>> list(flatten_iter(nested))
[1, 2, 3, 4, 5]
"""
for item in iterable:
if isinstance(item, Iterable) and not isinstance(item, basestring):
for subitem in flatten_iter(item):
yield subitem
else:
yield item
def flatten(iterable):
"""``flatten()`` returns a collapsed list of all the elements from
*iterable* while collapsing any nested iterables.
>>> nested = [[1, 2], [[3], [4, 5]]]
>>> flatten(nested)
[1, 2, 3, 4, 5]
"""
return list(flatten_iter(iterable))
def same(iterable, ref=_UNSET):
"""``same()`` returns ``True`` when all values in *iterable* are
equal to one another, or optionally a reference value,
*ref*. Similar to :func:`all` and :func:`any` in that it evaluates
an iterable and returns a :class:`bool`. ``same()`` returns
``True`` for empty iterables.
>>> same([])
True
>>> same([1])
True
>>> same(['a', 'a', 'a'])
True
>>> same(range(20))
False
>>> same([[], []])
True
>>> same([[], []], ref='test')
False
"""
iterator = iter(iterable)
if ref is _UNSET:
ref = next(iterator, ref)
return all(val == ref for val in iterator)
def default_visit(path, key, value):
# print('visit(%r, %r, %r)' % (path, key, value))
return key, value
# enable the extreme: monkeypatching iterutils with a different default_visit
_orig_default_visit = default_visit
def default_enter(path, key, value):
# print('enter(%r, %r)' % (key, value))
if isinstance(value, basestring):
return value, False
elif isinstance(value, Mapping):
return value.__class__(), ItemsView(value)
elif isinstance(value, Sequence):
return value.__class__(), enumerate(value)
elif isinstance(value, Set):
return value.__class__(), enumerate(value)
else:
# files, strings, other iterables, and scalars are not
# traversed
return value, False
def default_exit(path, key, old_parent, new_parent, new_items):
# print('exit(%r, %r, %r, %r, %r)'
# % (path, key, old_parent, new_parent, new_items))
ret = new_parent
if isinstance(new_parent, Mapping):
new_parent.update(new_items)
elif isinstance(new_parent, Sequence):
vals = [v for i, v in new_items]
try:
new_parent.extend(vals)
except AttributeError:
ret = new_parent.__class__(vals) # tuples
elif isinstance(new_parent, Set):
vals = [v for i, v in new_items]
try:
new_parent.update(vals)
except AttributeError:
ret = new_parent.__class__(vals) # frozensets
else:
raise RuntimeError('unexpected iterable type: %r' % type(new_parent))
return ret
def remap(root, visit=default_visit, enter=default_enter, exit=default_exit,
**kwargs):
"""The remap ("recursive map") function is used to traverse and
transform nested structures. Lists, tuples, sets, and dictionaries
are just a few of the data structures nested into heterogeneous
tree-like structures that are so common in programming.
Unfortunately, Python's built-in ways to manipulate collections
are almost all flat. List comprehensions may be fast and succinct,
but they do not recurse, making it tedious to apply quick changes
or complex transforms to real-world data.
remap goes where list comprehensions cannot.
Here's an example of removing all Nones from some data:
>>> from pprint import pprint
>>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None},
... 'Babylon 5': 6, 'Dr. Who': None}
>>> pprint(remap(reviews, lambda p, k, v: v is not None))
{'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}}
Notice how both Nones have been removed despite the nesting in the
dictionary. Not bad for a one-liner, and that's just the beginning.
See `this remap cookbook`_ for more delicious recipes.
.. _this remap cookbook: http://sedimental.org/remap.html
remap takes four main arguments: the object to traverse and three
optional callables which determine how the remapped object will be
created.
Args:
root: The target object to traverse. By default, remap
supports iterables like :class:`list`, :class:`tuple`,
:class:`dict`, and :class:`set`, but any object traversable by
*enter* will work.
visit (callable): This function is called on every item in
*root*. It must accept three positional arguments, *path*,
*key*, and *value*. *path* is simply a tuple of parents'
keys. *visit* should return the new key-value pair. It may
also return ``True`` as shorthand to keep the old item
unmodified, or ``False`` to drop the item from the new
structure. *visit* is called after *enter*, on the new parent.
The *visit* function is called for every item in root,
including duplicate items. For traversable values, it is
called on the new parent object, after all its children
have been visited. The default visit behavior simply
returns the key-value pair unmodified.
enter (callable): This function controls which items in *root*
are traversed. It accepts the same arguments as *visit*: the
path, the key, and the value of the current item. It returns a
pair of the blank new parent, and an iterator over the items
which should be visited. If ``False`` is returned instead of
an iterator, the value will not be traversed.
The *enter* function is only called once per unique value. The
default enter behavior support mappings, sequences, and
sets. Strings and all other iterables will not be traversed.
exit (callable): This function determines how to handle items
once they have been visited. It gets the same three
arguments as the other functions -- *path*, *key*, *value*
-- plus two more: the blank new parent object returned
from *enter*, and a list of the new items, as remapped by
*visit*.
Like *enter*, the *exit* function is only called once per
unique value. The default exit behavior is to simply add
all new items to the new parent, e.g., using
:meth:`list.extend` and :meth:`dict.update` to add to the
new parent. Immutable objects, such as a :class:`tuple` or
:class:`namedtuple`, must be recreated from scratch, but
use the same type as the new parent passed back from the
*enter* function.
reraise_visit (bool): A pragmatic convenience for the *visit*
callable. When set to ``False``, remap ignores any errors
raised by the *visit* callback. Items causing exceptions
are kept. See examples for more details.
remap is designed to cover the majority of cases with just the
*visit* callable. While passing in multiple callables is very
empowering, remap is designed so very few cases should require
passing more than one function.
When passing *enter* and *exit*, it's common and easiest to build
on the default behavior. Simply add ``from boltons.iterutils import
default_enter`` (or ``default_exit``), and have your enter/exit
function call the default behavior before or after your custom
logic. See `this example`_.
Duplicate and self-referential objects (aka reference loops) are
automatically handled internally, `as shown here`_.
.. _this example: http://sedimental.org/remap.html#sort_all_lists
.. _as shown here: http://sedimental.org/remap.html#corner_cases
"""
# TODO: improve argument formatting in sphinx doc
# TODO: enter() return (False, items) to continue traverse but cancel copy?
if not callable(visit):
raise TypeError('visit expected callable, not: %r' % visit)
if not callable(enter):
raise TypeError('enter expected callable, not: %r' % enter)
if not callable(exit):
raise TypeError('exit expected callable, not: %r' % exit)
reraise_visit = kwargs.pop('reraise_visit', True)
if kwargs:
raise TypeError('unexpected keyword arguments: %r' % kwargs.keys())
path, registry, stack = (), {}, [(None, root)]
new_items_stack = []
while stack:
key, value = stack.pop()
id_value = id(value)
if key is _REMAP_EXIT:
key, new_parent, old_parent = value
id_value = id(old_parent)
path, new_items = new_items_stack.pop()
value = exit(path, key, old_parent, new_parent, new_items)
registry[id_value] = value
if not new_items_stack:
continue
elif id_value in registry:
value = registry[id_value]
else:
res = enter(path, key, value)
try:
new_parent, new_items = res
except TypeError:
# TODO: handle False?
raise TypeError('enter should return a tuple of (new_parent,'
' items_iterator), not: %r' % res)
if new_items is not False:
# traverse unless False is explicitly passed
registry[id_value] = new_parent
new_items_stack.append((path, []))
if value is not root:
path += (key,)
stack.append((_REMAP_EXIT, (key, new_parent, value)))
if new_items:
stack.extend(reversed(list(new_items)))
continue
if visit is _orig_default_visit:
# avoid function call overhead by inlining identity operation
visited_item = (key, value)
else:
try:
visited_item = visit(path, key, value)
except Exception:
if reraise_visit:
raise
visited_item = True
if visited_item is False:
continue # drop
elif visited_item is True:
visited_item = (key, value)
# TODO: typecheck?
# raise TypeError('expected (key, value) from visit(),'
# ' not: %r' % visited_item)
try:
new_items_stack[-1][1].append(visited_item)
except IndexError:
raise TypeError('expected remappable root, not: %r' % root)
return value
class PathAccessError(KeyError, IndexError, TypeError):
"""An amalgamation of KeyError, IndexError, and TypeError,
representing what can occur when looking up a path in a nested
object.
"""
def __init__(self, exc, seg, path):
self.exc = exc
self.seg = seg
self.path = path
def __repr__(self):
cn = self.__class__.__name__
return '%s(%r, %r, %r)' % (cn, self.exc, self.seg, self.path)
def __str__(self):
return ('could not access %r from path %r, got error: %r'
% (self.seg, self.path, self.exc))
def get_path(root, path, default=_UNSET):
"""Retrieve a value from a nested object via a tuple representing the
lookup path.
>>> root = {'a': {'b': {'c': [[1], [2], [3]]}}}
>>> get_path(root, ('a', 'b', 'c', 2, 0))
3
The path format is intentionally consistent with that of
:func:`remap`.
One of get_path's chief aims is improved error messaging. EAFP is
great, but the error messages are not.
For instance, ``root['a']['b']['c'][2][1]`` gives back
``IndexError: list index out of range``
What went out of range where? get_path currently raises
``PathAccessError: could not access 2 from path ('a', 'b', 'c', 2,
1), got error: IndexError('list index out of range',)``, a
subclass of IndexError and KeyError.
You can also pass a default that covers the entire operation,
should the lookup fail at any level.
Args:
root: The target nesting of dictionaries, lists, or other
objects supporting ``__getitem__``.
path (tuple): A list of strings and integers to be successively
looked up within *root*.
default: The value to be returned should any
``PathAccessError`` exceptions be raised.
"""
if isinstance(path, basestring):
path = path.split('.')
cur = root
try:
for seg in path:
try:
cur = cur[seg]
except (KeyError, IndexError) as exc:
raise PathAccessError(exc, seg, path)
except TypeError as exc:
# either string index in a list, or a parent that
# doesn't support indexing
try:
seg = int(seg)
cur = cur[seg]
except (ValueError, KeyError, IndexError, TypeError):
if not is_iterable(cur):
exc = TypeError('%r object is not indexable'
% type(cur).__name__)
raise PathAccessError(exc, seg, path)
except PathAccessError:
if default is _UNSET:
raise
return default
return cur
def research(root, query=lambda p, k, v: True, reraise=False):
"""The :func:`research` function uses :func:`remap` to recurse over
any data nested in *root*, and find values which match a given
criterion, specified by the *query* callable.
Results are returned as a list of ``(path, value)`` pairs. The
paths are tuples in the same format accepted by
:func:`get_path`. This can be useful for comparing values nested
in two or more different structures.
Here's a simple example that finds all integers:
>>> root = {'a': {'b': 1, 'c': (2, 'd', 3)}, 'e': None}
>>> res = research(root, query=lambda p, k, v: isinstance(v, int))
>>> print(sorted(res))
[(('a', 'b'), 1), (('a', 'c', 0), 2), (('a', 'c', 2), 3)]
Note how *query* follows the same, familiar ``path, key, value``
signature as the ``visit`` and ``enter`` functions on
:func:`remap`, and returns a :class:`bool`.
Args:
root: The target object to search. Supports the same types of
objects as :func:`remap`, including :class:`list`,
:class:`tuple`, :class:`dict`, and :class:`set`.
query (callable): The function called on every object to
determine whether to include it in the search results. The
callable must accept three arguments, *path*, *key*, and
*value*, commonly abbreviated *p*, *k*, and *v*, same as
*enter* and *visit* from :func:`remap`.
reraise (bool): Whether to reraise exceptions raised by *query*
or to simply drop the result that caused the error.
With :func:`research` it's easy to inspect the details of a data
structure, like finding values that are at a certain depth (using
``len(p)``) and much more. If more advanced functionality is
needed, check out the code and make your own :func:`remap`
wrapper, and consider `submitting a patch`_!
.. _submitting a patch: https://github.com/mahmoud/boltons/pulls
"""
ret = []
if not callable(query):
raise TypeError('query expected callable, not: %r' % query)
def enter(path, key, value):
try:
if query(path, key, value):
ret.append((path + (key,), value))
except Exception:
if reraise:
raise
return default_enter(path, key, value)
remap(root, enter=enter)
return ret
# TODO: recollect()
# TODO: refilter()
# TODO: reiter()
# GUID iterators: 10x faster and somewhat more compact than uuid.
class GUIDerator(object):
"""The GUIDerator is an iterator that yields a globally-unique
identifier (GUID) on every iteration. The GUIDs produced are
hexadecimal strings.
Testing shows it to be around 12x faster than the uuid module. By
default it is also more compact, partly due to its default 96-bit
(24-hexdigit) length. 96 bits of randomness means that there is a
1 in 2 ^ 32 chance of collision after 2 ^ 64 iterations. If more
or less uniqueness is desired, the *size* argument can be adjusted
accordingly.
Args:
size (int): character length of the GUID, defaults to 24. Lengths
between 20 and 36 are considered valid.
The GUIDerator has built-in fork protection that causes it to
detect a fork on next iteration and reseed accordingly.
"""
def __init__(self, size=24):
self.size = size
if size < 20 or size > 36:
raise ValueError('expected 20 < size <= 36')
import hashlib
self._sha1 = hashlib.sha1
self.count = itertools.count()
self.reseed()
def reseed(self):
import socket
self.pid = os.getpid()
self.salt = '-'.join([str(self.pid),
socket.gethostname() or b'<nohostname>',
str(time.time()),
codecs.encode(os.urandom(6),
'hex_codec').decode('ascii')])
# that codecs trick is the best/only way to get a bytes to
# hexbytes in py2/3
return
def __iter__(self):
return self
if _IS_PY3:
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
target_bytes = (self.salt + str(next(self.count))).encode('utf8')
hash_text = self._sha1(target_bytes).hexdigest()[:self.size]
return hash_text
else:
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
return self._sha1(self.salt +
str(next(self.count))).hexdigest()[:self.size]
next = __next__
class SequentialGUIDerator(GUIDerator):
"""Much like the standard GUIDerator, the SequentialGUIDerator is an
iterator that yields a globally-unique identifier (GUID) on every
iteration. The GUIDs produced are hexadecimal strings.
The SequentialGUIDerator differs in that it picks a starting GUID
value and increments every iteration. This yields GUIDs which are
of course unique, but also ordered and lexicographically sortable.
The SequentialGUIDerator is around 50% faster than the normal
GUIDerator, making it almost 20x as fast as the built-in uuid
module. By default it is also more compact, partly due to its
96-bit (24-hexdigit) default length. 96 bits of randomness means that
there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64
iterations. If more or less uniqueness is desired, the *size*
argument can be adjusted accordingly.
Args:
size (int): character length of the GUID, defaults to 24.
Note that with SequentialGUIDerator there is a chance of GUIDs
growing larger than the size configured. The SequentialGUIDerator
has built-in fork protection that causes it to detect a fork on
next iteration and reseed accordingly.
"""
if _IS_PY3:
def reseed(self):
super(SequentialGUIDerator, self).reseed()
start_str = self._sha1(self.salt.encode('utf8')).hexdigest()
self.start = int(start_str[:self.size], 16)
self.start |= (1 << ((self.size * 4) - 2))
else:
def reseed(self):
super(SequentialGUIDerator, self).reseed()
start_str = self._sha1(self.salt).hexdigest()
self.start = int(start_str[:self.size], 16)
self.start |= (1 << ((self.size * 4) - 2))
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
return '%x' % (next(self.count) + self.start)
next = __next__
guid_iter = GUIDerator()
seq_guid_iter = SequentialGUIDerator()
def soft_sorted(iterable, first=None, last=None, key=None, reverse=False):
"""For when you care about the order of some elements, but not about
others.
Use this to float to the top and/or sink to the bottom a specific
ordering, while sorting the rest of the elements according to
normal :func:`sorted` rules.
>>> soft_sorted(['two', 'b', 'one', 'a'], first=['one', 'two'])
['one', 'two', 'a', 'b']
>>> soft_sorted(range(7), first=[6, 15], last=[2, 4], reverse=True)
[6, 5, 3, 1, 0, 2, 4]
>>> import string
>>> ''.join(soft_sorted(string.hexdigits, first='za1', last='b', key=str.lower))
'aA1023456789cCdDeEfFbB'
Args:
iterable (list): A list or other iterable to sort.
first (list): A sequence to enforce for elements which should
appear at the beginning of the returned list.
last (list): A sequence to enforce for elements which should
appear at the end of the returned list.
key (callable): Callable used to generate a comparable key for
each item to be sorted, same as the key in
:func:`sorted`. Note that entries in *first* and *last*
should be the keys for the items. Defaults to
passthrough/the identity function.
reverse (bool): Whether or not elements not explicitly ordered
by *first* and *last* should be in reverse order or not.
Returns a new list in sorted order.
"""
first = first or []
last = last or []
key = key or (lambda x: x)
seq = list(iterable)
other = [x for x in seq if not ((first and key(x) in first) or (last and key(x) in last))]
other.sort(key=key, reverse=reverse)
if first:
first = sorted([x for x in seq if key(x) in first], key=lambda x: first.index(key(x)))
if last:
last = sorted([x for x in seq if key(x) in last], key=lambda x: last.index(key(x)))
return first + other + last
def untyped_sorted(iterable, key=None, reverse=False):
"""A version of :func:`sorted` which will happily sort an iterable of
heterogeneous types and return a new list, similar to legacy Python's
behavior.
>>> untyped_sorted(['abc', 2.0, 1, 2, 'def'])
[1, 2.0, 2, 'abc', 'def']
Note how mutually orderable types are sorted as expected, as in
the case of the integers and floats above.
.. note::
Results may vary across Python versions and builds, but the
function will produce a sorted list, except in the case of
explicitly unorderable objects.
"""
class _Wrapper(object):
slots = ('obj',)
def __init__(self, obj):
self.obj = obj
def __lt__(self, other):
obj = key(self.obj) if key is not None else self.obj
other = key(other.obj) if key is not None else other.obj
try:
ret = obj < other
except TypeError:
ret = ((type(obj).__name__, id(type(obj)), obj)
< (type(other).__name__, id(type(other)), other))
return ret
if key is not None and not callable(key):
raise TypeError('expected function or callable object for key, not: %r'
% key)
return sorted(iterable, key=_Wrapper, reverse=reverse)
"""
May actually be faster to do an isinstance check for a str path
$ python -m timeit -s "x = [1]" "x[0]"
10000000 loops, best of 3: 0.0207 usec per loop
$ python -m timeit -s "x = [1]" "try: x[0] \nexcept: pass"
10000000 loops, best of 3: 0.029 usec per loop
$ python -m timeit -s "x = [1]" "try: x[1] \nexcept: pass"
1000000 loops, best of 3: 0.315 usec per loop
# setting up try/except is fast, only around 0.01us
# actually triggering the exception takes almost 10x as long
$ python -m timeit -s "x = [1]" "isinstance(x, basestring)"
10000000 loops, best of 3: 0.141 usec per loop
$ python -m timeit -s "x = [1]" "isinstance(x, str)"
10000000 loops, best of 3: 0.131 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.')\n except: pass"
1000000 loops, best of 3: 0.443 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.') \nexcept AttributeError: pass"
1000000 loops, best of 3: 0.544 usec per loop
"""