Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) 2013, Mahmoud Hashemi | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are | |
# met: | |
# | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# * Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# * The names of the contributors may not be used to endorse or | |
# promote products derived from this software without specific | |
# prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
"""\ | |
The :class:`set` type brings the practical expressiveness of | |
set theory to Python. It has a very rich API overall, but lacks a | |
couple of fundamental features. For one, sets are not ordered. On top | |
of this, sets are not indexable, i.e, ``my_set[8]`` will raise an | |
:exc:`TypeError`. The :class:`IndexedSet` type remedies both of these | |
issues without compromising on the excellent complexity | |
characteristics of Python's built-in set implementation. | |
""" | |
from __future__ import print_function | |
from bisect import bisect_left | |
from itertools import chain, islice | |
import operator | |
try: | |
from collections.abc import MutableSet | |
except ImportError: | |
from collections import MutableSet | |
try: | |
from .typeutils import make_sentinel | |
_MISSING = make_sentinel(var_name='_MISSING') | |
except ImportError: | |
_MISSING = object() | |
__all__ = ['IndexedSet', 'complement'] | |
_COMPACTION_FACTOR = 8 | |
# TODO: inherit from set() | |
# TODO: .discard_many(), .remove_many() | |
# TODO: raise exception on non-set params? | |
# TODO: technically reverse operators should probably reverse the | |
# order of the 'other' inputs and put self last (to try and maintain | |
# insertion order) | |
class IndexedSet(MutableSet): | |
"""``IndexedSet`` is a :class:`collections.MutableSet` that maintains | |
insertion order and uniqueness of inserted elements. It's a hybrid | |
type, mostly like an OrderedSet, but also :class:`list`-like, in | |
that it supports indexing and slicing. | |
Args: | |
other (iterable): An optional iterable used to initialize the set. | |
>>> x = IndexedSet(list(range(4)) + list(range(8))) | |
>>> x | |
IndexedSet([0, 1, 2, 3, 4, 5, 6, 7]) | |
>>> x - set(range(2)) | |
IndexedSet([2, 3, 4, 5, 6, 7]) | |
>>> x[-1] | |
7 | |
>>> fcr = IndexedSet('freecreditreport.com') | |
>>> ''.join(fcr[:fcr.index('.')]) | |
'frecditpo' | |
Standard set operators and interoperation with :class:`set` are | |
all supported: | |
>>> fcr & set('cash4gold.com') | |
IndexedSet(['c', 'd', 'o', '.', 'm']) | |
As you can see, the ``IndexedSet`` is almost like a ``UniqueList``, | |
retaining only one copy of a given value, in the order it was | |
first added. For the curious, the reason why IndexedSet does not | |
support setting items based on index (i.e, ``__setitem__()``), | |
consider the following dilemma:: | |
my_indexed_set = [A, B, C, D] | |
my_indexed_set[2] = A | |
At this point, a set requires only one *A*, but a :class:`list` would | |
overwrite *C*. Overwriting *C* would change the length of the list, | |
meaning that ``my_indexed_set[2]`` would not be *A*, as expected with a | |
list, but rather *D*. So, no ``__setitem__()``. | |
Otherwise, the API strives to be as complete a union of the | |
:class:`list` and :class:`set` APIs as possible. | |
""" | |
def __init__(self, other=None): | |
self.item_index_map = dict() | |
self.item_list = [] | |
self.dead_indices = [] | |
self._compactions = 0 | |
self._c_max_size = 0 | |
if other: | |
self.update(other) | |
# internal functions | |
def _dead_index_count(self): | |
return len(self.item_list) - len(self.item_index_map) | |
def _compact(self): | |
if not self.dead_indices: | |
return | |
self._compactions += 1 | |
dead_index_count = self._dead_index_count | |
items, index_map = self.item_list, self.item_index_map | |
self._c_max_size = max(self._c_max_size, len(items)) | |
for i, item in enumerate(self): | |
items[i] = item | |
index_map[item] = i | |
del items[-dead_index_count:] | |
del self.dead_indices[:] | |
def _cull(self): | |
ded = self.dead_indices | |
if not ded: | |
return | |
items, ii_map = self.item_list, self.item_index_map | |
if not ii_map: | |
del items[:] | |
del ded[:] | |
elif len(ded) > 384: | |
self._compact() | |
elif self._dead_index_count > (len(items) / _COMPACTION_FACTOR): | |
self._compact() | |
elif items[-1] is _MISSING: # get rid of dead right hand side | |
num_dead = 1 | |
while items[-(num_dead + 1)] is _MISSING: | |
num_dead += 1 | |
if ded and ded[-1][1] == len(items): | |
del ded[-1] | |
del items[-num_dead:] | |
def _get_real_index(self, index): | |
if index < 0: | |
index += len(self) | |
if not self.dead_indices: | |
return index | |
real_index = index | |
for d_start, d_stop in self.dead_indices: | |
if real_index < d_start: | |
break | |
real_index += d_stop - d_start | |
return real_index | |
def _get_apparent_index(self, index): | |
if index < 0: | |
index += len(self) | |
if not self.dead_indices: | |
return index | |
apparent_index = index | |
for d_start, d_stop in self.dead_indices: | |
if index < d_start: | |
break | |
apparent_index -= d_stop - d_start | |
return apparent_index | |
def _add_dead(self, start, stop=None): | |
# TODO: does not handle when the new interval subsumes | |
# multiple existing intervals | |
dints = self.dead_indices | |
if stop is None: | |
stop = start + 1 | |
cand_int = [start, stop] | |
if not dints: | |
dints.append(cand_int) | |
return | |
int_idx = bisect_left(dints, cand_int) | |
dint = dints[int_idx - 1] | |
d_start, d_stop = dint | |
if start <= d_start <= stop: | |
dint[0] = start | |
elif start <= d_stop <= stop: | |
dint[1] = stop | |
else: | |
dints.insert(int_idx, cand_int) | |
return | |
# common operations (shared by set and list) | |
def __len__(self): | |
return len(self.item_index_map) | |
def __contains__(self, item): | |
return item in self.item_index_map | |
def __iter__(self): | |
return (item for item in self.item_list if item is not _MISSING) | |
def __reversed__(self): | |
item_list = self.item_list | |
return (item for item in reversed(item_list) if item is not _MISSING) | |
def __repr__(self): | |
return '%s(%r)' % (self.__class__.__name__, list(self)) | |
def __eq__(self, other): | |
if isinstance(other, IndexedSet): | |
return len(self) == len(other) and list(self) == list(other) | |
return set(self) == set(other) | |
def from_iterable(cls, it): | |
"from_iterable(it) -> create a set from an iterable" | |
return cls(it) | |
# set operations | |
def add(self, item): | |
"add(item) -> add item to the set" | |
if item not in self.item_index_map: | |
self.item_index_map[item] = len(self.item_list) | |
self.item_list.append(item) | |
def remove(self, item): | |
"remove(item) -> remove item from the set, raises if not present" | |
try: | |
didx = self.item_index_map.pop(item) | |
except KeyError: | |
raise KeyError(item) | |
self.item_list[didx] = _MISSING | |
self._add_dead(didx) | |
self._cull() | |
def discard(self, item): | |
"discard(item) -> discard item from the set (does not raise)" | |
try: | |
self.remove(item) | |
except KeyError: | |
pass | |
def clear(self): | |
"clear() -> empty the set" | |
del self.item_list[:] | |
del self.dead_indices[:] | |
self.item_index_map.clear() | |
def isdisjoint(self, other): | |
"isdisjoint(other) -> return True if no overlap with other" | |
iim = self.item_index_map | |
for k in other: | |
if k in iim: | |
return False | |
return True | |
def issubset(self, other): | |
"issubset(other) -> return True if other contains this set" | |
if len(other) < len(self): | |
return False | |
for k in self.item_index_map: | |
if k not in other: | |
return False | |
return True | |
def issuperset(self, other): | |
"issuperset(other) -> return True if set contains other" | |
if len(other) > len(self): | |
return False | |
iim = self.item_index_map | |
for k in other: | |
if k not in iim: | |
return False | |
return True | |
def union(self, *others): | |
"union(*others) -> return a new set containing this set and others" | |
return self.from_iterable(chain(self, *others)) | |
def iter_intersection(self, *others): | |
"iter_intersection(*others) -> iterate over elements also in others" | |
for k in self: | |
for other in others: | |
if k not in other: | |
break | |
else: | |
yield k | |
return | |
def intersection(self, *others): | |
"intersection(*others) -> get a set with overlap of this and others" | |
if len(others) == 1: | |
other = others[0] | |
return self.from_iterable(k for k in self if k in other) | |
return self.from_iterable(self.iter_intersection(*others)) | |
def iter_difference(self, *others): | |
"iter_difference(*others) -> iterate over elements not in others" | |
for k in self: | |
for other in others: | |
if k in other: | |
break | |
else: | |
yield k | |
return | |
def difference(self, *others): | |
"difference(*others) -> get a new set with elements not in others" | |
if len(others) == 1: | |
other = others[0] | |
return self.from_iterable(k for k in self if k not in other) | |
return self.from_iterable(self.iter_difference(*others)) | |
def symmetric_difference(self, *others): | |
"symmetric_difference(*others) -> XOR set of this and others" | |
ret = self.union(*others) | |
return ret.difference(self.intersection(*others)) | |
__or__ = __ror__ = union | |
__and__ = __rand__ = intersection | |
__sub__ = difference | |
__xor__ = __rxor__ = symmetric_difference | |
def __rsub__(self, other): | |
vals = [x for x in other if x not in self] | |
return type(other)(vals) | |
# in-place set operations | |
def update(self, *others): | |
"update(*others) -> add values from one or more iterables" | |
if not others: | |
return # raise? | |
elif len(others) == 1: | |
other = others[0] | |
else: | |
other = chain(others) | |
for o in other: | |
self.add(o) | |
def intersection_update(self, *others): | |
"intersection_update(*others) -> discard self.difference(*others)" | |
for val in self.difference(*others): | |
self.discard(val) | |
def difference_update(self, *others): | |
"difference_update(*others) -> discard self.intersection(*others)" | |
if self in others: | |
self.clear() | |
for val in self.intersection(*others): | |
self.discard(val) | |
def symmetric_difference_update(self, other): # note singular 'other' | |
"symmetric_difference_update(other) -> in-place XOR with other" | |
if self is other: | |
self.clear() | |
for val in other: | |
if val in self: | |
self.discard(val) | |
else: | |
self.add(val) | |
def __ior__(self, *others): | |
self.update(*others) | |
return self | |
def __iand__(self, *others): | |
self.intersection_update(*others) | |
return self | |
def __isub__(self, *others): | |
self.difference_update(*others) | |
return self | |
def __ixor__(self, *others): | |
self.symmetric_difference_update(*others) | |
return self | |
def iter_slice(self, start, stop, step=None): | |
"iterate over a slice of the set" | |
iterable = self | |
if start is not None: | |
start = self._get_real_index(start) | |
if stop is not None: | |
stop = self._get_real_index(stop) | |
if step is not None and step < 0: | |
step = -step | |
iterable = reversed(self) | |
return islice(iterable, start, stop, step) | |
# list operations | |
def __getitem__(self, index): | |
try: | |
start, stop, step = index.start, index.stop, index.step | |
except AttributeError: | |
index = operator.index(index) | |
else: | |
iter_slice = self.iter_slice(start, stop, step) | |
return self.from_iterable(iter_slice) | |
if index < 0: | |
index += len(self) | |
real_index = self._get_real_index(index) | |
try: | |
ret = self.item_list[real_index] | |
except IndexError: | |
raise IndexError('IndexedSet index out of range') | |
return ret | |
def pop(self, index=None): | |
"pop(index) -> remove the item at a given index (-1 by default)" | |
item_index_map = self.item_index_map | |
len_self = len(item_index_map) | |
if index is None or index == -1 or index == len_self - 1: | |
ret = self.item_list.pop() | |
del item_index_map[ret] | |
else: | |
real_index = self._get_real_index(index) | |
ret = self.item_list[real_index] | |
self.item_list[real_index] = _MISSING | |
del item_index_map[ret] | |
self._add_dead(real_index) | |
self._cull() | |
return ret | |
def count(self, val): | |
"count(val) -> count number of instances of value (0 or 1)" | |
if val in self.item_index_map: | |
return 1 | |
return 0 | |
def reverse(self): | |
"reverse() -> reverse the contents of the set in-place" | |
reversed_list = list(reversed(self)) | |
self.item_list[:] = reversed_list | |
for i, item in enumerate(self.item_list): | |
self.item_index_map[item] = i | |
del self.dead_indices[:] | |
def sort(self, **kwargs): | |
"sort() -> sort the contents of the set in-place" | |
sorted_list = sorted(self, **kwargs) | |
if sorted_list == self.item_list: | |
return | |
self.item_list[:] = sorted_list | |
for i, item in enumerate(self.item_list): | |
self.item_index_map[item] = i | |
del self.dead_indices[:] | |
def index(self, val): | |
"index(val) -> get the index of a value, raises if not present" | |
try: | |
return self._get_apparent_index(self.item_index_map[val]) | |
except KeyError: | |
cn = self.__class__.__name__ | |
raise ValueError('%r is not in %s' % (val, cn)) | |
def complement(wrapped): | |
"""Given a :class:`set`, convert it to a **complement set**. | |
Whereas a :class:`set` keeps track of what it contains, a | |
`complement set | |
<https://en.wikipedia.org/wiki/Complement_(set_theory)>`_ keeps | |
track of what it does *not* contain. For example, look what | |
happens when we intersect a normal set with a complement set:: | |
>>> list(set(range(5)) & complement(set([2, 3]))) | |
[0, 1, 4] | |
We get the everything in the left that wasn't in the right, | |
because intersecting with a complement is the same as subtracting | |
a normal set. | |
Args: | |
wrapped (set): A set or any other iterable which should be | |
turned into a complement set. | |
All set methods and operators are supported by complement sets, | |
between other :func:`complement`-wrapped sets and/or regular | |
:class:`set` objects. | |
Because a complement set only tracks what elements are *not* in | |
the set, functionality based on set contents is unavailable: | |
:func:`len`, :func:`iter` (and for loops), and ``.pop()``. But a | |
complement set can always be turned back into a regular set by | |
complementing it again: | |
>>> s = set(range(5)) | |
>>> complement(complement(s)) == s | |
True | |
.. note:: | |
An empty complement set corresponds to the concept of a | |
`universal set <https://en.wikipedia.org/wiki/Universal_set>`_ | |
from mathematics. | |
Complement sets by example | |
^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
Many uses of sets can be expressed more simply by using a | |
complement. Rather than trying to work out in your head the proper | |
way to invert an expression, you can just throw a complement on | |
the set. Consider this example of a name filter:: | |
>>> class NamesFilter(object): | |
... def __init__(self, allowed): | |
... self._allowed = allowed | |
... | |
... def filter(self, names): | |
... return [name for name in names if name in self._allowed] | |
>>> NamesFilter(set(['alice', 'bob'])).filter(['alice', 'bob', 'carol']) | |
['alice', 'bob'] | |
What if we want to just express "let all the names through"? | |
We could try to enumerate all of the expected names:: | |
``NamesFilter({'alice', 'bob', 'carol'})`` | |
But this is very brittle -- what if at some point over this | |
object is changed to filter ``['alice', 'bob', 'carol', 'dan']``? | |
Even worse, what about the poor programmer who next works | |
on this piece of code? They cannot tell whether the purpose | |
of the large allowed set was "allow everything", or if 'dan' | |
was excluded for some subtle reason. | |
A complement set lets the programmer intention be expressed | |
succinctly and directly:: | |
NamesFilter(complement(set())) | |
Not only is this code short and robust, it is easy to understand | |
the intention. | |
""" | |
if type(wrapped) is _ComplementSet: | |
return wrapped.complemented() | |
if type(wrapped) is frozenset: | |
return _ComplementSet(excluded=wrapped) | |
return _ComplementSet(excluded=set(wrapped)) | |
def _norm_args_typeerror(other): | |
'''normalize args and raise type-error if there is a problem''' | |
if type(other) in (set, frozenset): | |
inc, exc = other, None | |
elif type(other) is _ComplementSet: | |
inc, exc = other._included, other._excluded | |
else: | |
raise TypeError('argument must be another set or complement(set)') | |
return inc, exc | |
def _norm_args_notimplemented(other): | |
'''normalize args and return NotImplemented (for overloaded operators)''' | |
if type(other) in (set, frozenset): | |
inc, exc = other, None | |
elif type(other) is _ComplementSet: | |
inc, exc = other._included, other._excluded | |
else: | |
return NotImplemented, None | |
return inc, exc | |
class _ComplementSet(object): | |
""" | |
helper class for complement() that implements the set methods | |
""" | |
__slots__ = ('_included', '_excluded') | |
def __init__(self, included=None, excluded=None): | |
if included is None: | |
assert type(excluded) in (set, frozenset) | |
elif excluded is None: | |
assert type(included) in (set, frozenset) | |
else: | |
raise ValueError('one of included or excluded must be a set') | |
self._included, self._excluded = included, excluded | |
def __repr__(self): | |
if self._included is None: | |
return 'complement({0})'.format(repr(self._excluded)) | |
return 'complement(complement({0}))'.format(repr(self._included)) | |
def complemented(self): | |
'''return a complement of the current set''' | |
if type(self._included) is frozenset or type(self._excluded) is frozenset: | |
return _ComplementSet(included=self._excluded, excluded=self._included) | |
return _ComplementSet( | |
included=None if self._excluded is None else set(self._excluded), | |
excluded=None if self._included is None else set(self._included)) | |
__invert__ = complemented | |
def complement(self): | |
'''convert the current set to its complement in-place''' | |
self._included, self._excluded = self._excluded, self._included | |
def __contains__(self, item): | |
if self._included is None: | |
return not item in self._excluded | |
return item in self._included | |
def add(self, item): | |
if self._included is None: | |
if item in self._excluded: | |
self._excluded.remove(item) | |
else: | |
self._included.add(item) | |
def remove(self, item): | |
if self._included is None: | |
self._excluded.add(item) | |
else: | |
self._included.remove(item) | |
def pop(self): | |
if self._included is None: | |
raise NotImplementedError # self.missing.add(random.choice(gc.objects())) | |
return self._included.pop() | |
def intersection(self, other): | |
try: | |
return self & other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __and__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return _ComplementSet(included=inc - self._excluded) | |
else: # - - | |
return _ComplementSet(excluded=self._excluded.union(other._excluded)) | |
else: | |
if inc is None: # + - | |
return _ComplementSet(included=exc - self._included) | |
else: # + + | |
return _ComplementSet(included=self._included.intersection(inc)) | |
__rand__ = __and__ | |
def __iand__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded = inc - self._excluded # TODO: do this in place? | |
else: # - - | |
self._excluded |= exc | |
else: | |
if inc is None: # + - | |
self._included -= exc | |
self._included, self._excluded = None, self._included | |
else: # + + | |
self._included &= inc | |
return self | |
def union(self, other): | |
try: | |
return self | other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __or__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return _ComplementSet(excluded=self._excluded - inc) | |
else: # - - | |
return _ComplementSet(excluded=self._excluded.intersection(exc)) | |
else: | |
if inc is None: # + - | |
return _ComplementSet(excluded=exc - self._included) | |
else: # + + | |
return _ComplementSet(included=self._included.union(inc)) | |
__ror__ = __or__ | |
def __ior__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded -= inc | |
else: # - - | |
self._excluded &= exc | |
else: | |
if inc is None: # + - | |
self._included, self._excluded = None, exc - self._included # TODO: do this in place? | |
else: # + + | |
self._included |= inc | |
return self | |
def update(self, items): | |
if type(items) in (set, frozenset): | |
inc, exc = items, None | |
elif type(items) is _ComplementSet: | |
inc, exc = items._included, items._excluded | |
else: | |
inc, exc = frozenset(items), None | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded &= inc | |
else: # - - | |
self._excluded.discard(exc) | |
else: | |
if inc is None: # + - | |
self._included &= exc | |
self._included, self._excluded = None, self._excluded | |
else: # + + | |
self._included.update(inc) | |
def discard(self, items): | |
if type(items) in (set, frozenset): | |
inc, exc = items, None | |
elif type(items) is _ComplementSet: | |
inc, exc = items._included, items._excluded | |
else: | |
inc, exc = frozenset(items), None | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded.update(inc) | |
else: # - - | |
self._included, self._excluded = exc - self._excluded, None | |
else: | |
if inc is None: # + - | |
self._included &= exc | |
else: # + + | |
self._included.discard(inc) | |
def symmetric_difference(self, other): | |
try: | |
return self ^ other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __xor__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return _ComplementSet(excluded=self._excluded - inc) | |
else: # - - | |
return _ComplementSet(included=self._excluded.symmetric_difference(exc)) | |
else: | |
if inc is None: # + - | |
return _ComplementSet(excluded=exc - self._included) | |
else: # + + | |
return _ComplementSet(included=self._included.symmetric_difference(inc)) | |
__rxor__ = __xor__ | |
def symmetric_difference_update(self, other): | |
inc, exc = _norm_args_typeerror(other) | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded |= inc | |
else: # - - | |
self._excluded.symmetric_difference_update(exc) | |
self._included, self._excluded = self._excluded, None | |
else: | |
if inc is None: # + - | |
self._included |= exc | |
self._included, self._excluded = None, self._included | |
else: # + + | |
self._included.symmetric_difference_update(inc) | |
def isdisjoint(self, other): | |
inc, exc = _norm_args_typeerror(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return inc.issubset(self._excluded) | |
else: # - - | |
return False | |
else: | |
if inc is None: # + - | |
return self._included.issubset(exc) | |
else: # + + | |
return self._included.isdisjoint(inc) | |
def issubset(self, other): | |
'''everything missing from other is also missing from self''' | |
try: | |
return self <= other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __le__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return False | |
else: # - - | |
return self._excluded.issupserset(exc) | |
else: | |
if inc is None: # + - | |
return self._included.isdisjoint(exc) | |
else: # + + | |
return self._included.issubset(inc) | |
def __lt__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return False | |
else: # - - | |
return self._excluded > exc | |
else: | |
if inc is None: # + - | |
return self._included.isdisjoint(exc) | |
else: # + + | |
return self._included < inc | |
def issuperset(self, other): | |
'''everything missing from self is also missing from super''' | |
try: | |
return self >= other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __ge__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return not self._excluded.intersection(inc) | |
else: # - - | |
return self._excluded.issubset(exc) | |
else: | |
if inc is None: # + - | |
return False | |
else: # + + | |
return self._included.issupserset(inc) | |
def __gt__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return not self._excluded.intersection(inc) | |
else: # - - | |
return self._excluded < exc | |
else: | |
if inc is None: # + - | |
return False | |
else: # + + | |
return self._included > inc | |
def difference(self, other): | |
try: | |
return self - other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __sub__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
return _ComplementSet(excluded=self._excluded | inc) | |
else: # - - | |
return _ComplementSet(included=exc - self._excluded) | |
else: | |
if inc is None: # + - | |
return _ComplementSet(included=self._included & exc) | |
else: # + + | |
return _ComplementSet(included=self._included.difference(inc)) | |
def __rsub__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
# rsub, so the expression being evaluated is "other - self" | |
if self._included is None: | |
if exc is None: # - + | |
return _ComplementSet(included=inc & self._excluded) | |
else: # - - | |
return _ComplementSet(included=self._excluded - exc) | |
else: | |
if inc is None: # + - | |
return _ComplementSet(excluded=exc | self._included) | |
else: # + + | |
return _ComplementSet(included=inc.difference(self._included)) | |
def difference_update(self, other): | |
try: | |
self -= other | |
except NotImplementedError: | |
raise TypeError('argument must be another set or complement(set)') | |
def __isub__(self, other): | |
inc, exc = _norm_args_notimplemented(other) | |
if inc is NotImplemented: | |
return NotImplemented | |
if self._included is None: | |
if exc is None: # - + | |
self._excluded |= inc | |
else: # - - | |
self._included, self._excluded = exc - self._excluded, None | |
else: | |
if inc is None: # + - | |
self._included &= exc | |
else: # + + | |
self._included.difference_update(inc) | |
return self | |
def __eq__(self, other): | |
return ( | |
type(self) is type(other) | |
and self._included == other._included | |
and self._excluded == other._excluded) or ( | |
type(other) in (set, frozenset) and self._included == other) | |
def __hash__(self): | |
return hash(self._included) ^ hash(self._excluded) | |
def __len__(self): | |
if self._included is not None: | |
return len(self._included) | |
raise NotImplementedError('complemented sets have undefined length') | |
def __iter__(self): | |
if self._included is not None: | |
return iter(self._included) | |
raise NotImplementedError('complemented sets have undefined contents') | |
def __bool__(self): | |
if self._included is not None: | |
return bool(self._included) | |
return True | |
__nonzero__ = __bool__ # py2 compat | |