Commit
·
25c6e35
1
Parent(s):
ff892bd
first
Browse files- fractal_generator.py +82 -0
fractal_generator.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
from enum import Enum
|
7 |
+
|
8 |
+
|
9 |
+
class FractalType(Enum):
|
10 |
+
Julia = 1
|
11 |
+
Mandelbrot = 2
|
12 |
+
|
13 |
+
|
14 |
+
class FractalGenerator:
|
15 |
+
""" Creates a single fractal object and either returns it as as a numpy array, plot it or persists it as an pgn
|
16 |
+
image. The output of this class is used by FractalTrainingValidationSet to generate training/val sets
|
17 |
+
Args:
|
18 |
+
complex_function -- complex function to make a Julia fractal
|
19 |
+
n -- fractal size will ne n*n
|
20 |
+
xlim,ylim -- tuples with the plotting region on the complex plane
|
21 |
+
thr -- once a function grows larger that this number is considered to be divergent to infinity
|
22 |
+
max_iter -- number of compositions of the complex function with itself
|
23 |
+
type_ -- fractal type
|
24 |
+
fractal -- numpy array with the fractal
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, n=256, xlim=(-2, 2), ylim=(-2, 2), thr=2, max_iter=10):
|
28 |
+
self.type_ = None
|
29 |
+
self.fractal = None
|
30 |
+
self.n = n
|
31 |
+
self.xlim = xlim
|
32 |
+
self.ylim = ylim
|
33 |
+
self.thr = thr
|
34 |
+
self.max_iter = max_iter
|
35 |
+
|
36 |
+
def create_julia(self, complex_function=lambda z: np.sin(z ** 4 + 1.41)):
|
37 |
+
""" Creates a fractal of the Julia family, the fractal is stored inside self.fractal """
|
38 |
+
fractal = np.zeros((self.n, self.n), dtype='complex')
|
39 |
+
x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
|
40 |
+
y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
|
41 |
+
for ix, x in enumerate(x_space):
|
42 |
+
for iy, y in enumerate(y_space):
|
43 |
+
for i in range(self.max_iter):
|
44 |
+
if i == 0: z = complex(x, y)
|
45 |
+
z = complex_function(z)
|
46 |
+
if np.abs(z) >= self.thr: z = self.thr; break
|
47 |
+
fractal[ix, iy] = z
|
48 |
+
self.fractal = np.abs(fractal)
|
49 |
+
self.type_ = FractalType.Julia
|
50 |
+
return self
|
51 |
+
|
52 |
+
def create_mandelbrot(self):
|
53 |
+
""" Creates a fractal of the Mandelbrot family, the fractal is stored inside self.fractal """
|
54 |
+
fractal = np.zeros((self.n, self.n), dtype='complex')
|
55 |
+
x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
|
56 |
+
y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
|
57 |
+
for ix, x in enumerate(x_space):
|
58 |
+
for iy, y in enumerate(y_space):
|
59 |
+
for i in range(self.max_iter):
|
60 |
+
if i == 0: z = 0
|
61 |
+
z = z ** 2 + complex(x, y)
|
62 |
+
if np.abs(z) >= self.thr: z = self.thr; break
|
63 |
+
fractal[ix, iy] = z
|
64 |
+
self.fractal = np.abs(fractal.transpose())
|
65 |
+
self.type_ = FractalType.Mandelbrot
|
66 |
+
return self
|
67 |
+
|
68 |
+
def plot(self, clim=None, **kwargs):
|
69 |
+
if self.fractal is None:
|
70 |
+
print('Nothing to plot. Generate a fractal first.')
|
71 |
+
return None
|
72 |
+
plt.matshow(self.fractal, **kwargs)
|
73 |
+
plt.gca().axes.get_xaxis().set_visible(False)
|
74 |
+
plt.gca().axes.get_yaxis().set_visible(False)
|
75 |
+
plt.clim(clim)
|
76 |
+
return plt.gcf()
|
77 |
+
|
78 |
+
def persist_plot(self, filename, container, clim=None, **kwargs):
|
79 |
+
if not os.path.isdir(container): os.mkdir(container)
|
80 |
+
self.plot(clim=clim, **kwargs)
|
81 |
+
plt.savefig(str(Path(container) / filename), png='png', dpi=None)
|
82 |
+
plt.close(plt.gcf())
|