gabriel lopez commited on
Commit
67c09ab
Β·
1 Parent(s): 7522996
Files changed (5) hide show
  1. .gitignore +1 -0
  2. README.md +1 -1
  3. app.py +55 -0
  4. fractal_generator.py +31 -36
  5. requirements.txt +2 -3
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Fractal Generator
3
- emoji: πŸ’©
4
  colorFrom: indigo
5
  colorTo: pink
6
  sdk: gradio
 
1
  ---
2
  title: Fractal Generator
3
+ emoji: πŸ˜€
4
  colorFrom: indigo
5
  colorTo: pink
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from numpy import *
3
+
4
+ from fractal_generator import FractalGenerator
5
+
6
+ TITLE = "Fractal Generator"
7
+ DESCRIPTION = "<center>Create your own fractal art!</center>"
8
+ EXAMPLES = [
9
+ ["Julia", "sin(z**4 + 1.41)"],
10
+ ["Julia", "sin(z**4 + 1.41)*exp(2.4*1J)"],
11
+ ["Julia", "sin(z**4 + 3.41)*exp(2.5*1J)"],
12
+ ]
13
+ ARTICLE = r"""<center>
14
+ This application uses Julia and Mandelbrot fractal algorithms.
15
+ These plots show the convergence plot for infinitely composed complex functions <br>
16
+ These functions are based on artist-defined generating functions $f(z)$ with $z /in /mathbb{C}$ as follows<br>
17
+ $$ F(z) = /prod^{/inf} f(z) $$<br>
18
+ Done by dr. Gabriel Lopez<br>
19
+ For more please visit: <a href='https://sites.google.com/view/dr-gabriel-lopez/home'>My Page</a><br>
20
+ </center>"""
21
+
22
+ # interactive function
23
+ def plot_fractal(fractal_type: str, python_function: str):
24
+ frac = FractalGenerator(n=500, max_iter=10)
25
+ if fractal_type == "Julia":
26
+ frac.create_julia(lambda z: eval(python_function))
27
+ elif fractal_type == "Mandelbrot":
28
+ frac.create_mandelbrot()
29
+ else:
30
+ print("Current wrong option: ", fractal_type)
31
+ return frac.plot()
32
+
33
+
34
+ # gradio frontend elements
35
+ in_dropdown = gr.Dropdown(
36
+ choices=["Julia", "Mandelbrot"], label="Select a type of fractal:", value="Julia"
37
+ )
38
+ in_text = gr.Textbox(
39
+ value="sin(z**4 + 1.41)",
40
+ label="Enter function using $z$ as complex-variable. You can use all numpy functions. 1J = /sqrt{-1}",
41
+ placeholder="your own z function",
42
+ lines=4,
43
+ )
44
+ out_plot = gr.Plot(label="Fractal plot")
45
+
46
+ # gradio interface
47
+ gr.Interface(
48
+ inputs=[in_dropdown, in_text],
49
+ outputs=out_plot,
50
+ fn=plot_fractal,
51
+ examples=EXAMPLES,
52
+ title=TITLE,
53
+ description=DESCRIPTION,
54
+ article=ARTICLE,
55
+ ).launch()
fractal_generator.py CHANGED
@@ -1,9 +1,7 @@
1
- from pathlib import Path
2
 
3
- import matplotlib.pyplot as plt
4
  import numpy as np
5
- import os
6
- from enum import Enum
7
 
8
 
9
  class FractalType(Enum):
@@ -12,17 +10,17 @@ class FractalType(Enum):
12
 
13
 
14
  class FractalGenerator:
15
- """ Creates a single fractal object and either returns it as as a numpy array, plot it or persists it as an pgn
16
- image. The output of this class is used by FractalTrainingValidationSet to generate training/val sets
17
- Args:
18
- complex_function -- complex function to make a Julia fractal
19
- n -- fractal size will ne n*n
20
- xlim,ylim -- tuples with the plotting region on the complex plane
21
- thr -- once a function grows larger that this number is considered to be divergent to infinity
22
- max_iter -- number of compositions of the complex function with itself
23
- type_ -- fractal type
24
- fractal -- numpy array with the fractal
25
- """
26
 
27
  def __init__(self, n=256, xlim=(-2, 2), ylim=(-2, 2), thr=2, max_iter=10):
28
  self.type_ = None
@@ -34,49 +32,46 @@ class FractalGenerator:
34
  self.max_iter = max_iter
35
 
36
  def create_julia(self, complex_function=lambda z: np.sin(z ** 4 + 1.41)):
37
- """ Creates a fractal of the Julia family, the fractal is stored inside self.fractal """
38
- fractal = np.zeros((self.n, self.n), dtype='complex')
39
  x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
40
  y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
41
  for ix, x in enumerate(x_space):
42
  for iy, y in enumerate(y_space):
43
  for i in range(self.max_iter):
44
- if i == 0: z = complex(x, y)
 
45
  z = complex_function(z)
46
- if np.abs(z) >= self.thr: z = self.thr; break
 
 
47
  fractal[ix, iy] = z
48
  self.fractal = np.abs(fractal)
49
  self.type_ = FractalType.Julia
50
  return self
51
 
52
  def create_mandelbrot(self):
53
- """ Creates a fractal of the Mandelbrot family, the fractal is stored inside self.fractal """
54
- fractal = np.zeros((self.n, self.n), dtype='complex')
55
  x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
56
  y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
57
  for ix, x in enumerate(x_space):
58
  for iy, y in enumerate(y_space):
59
  for i in range(self.max_iter):
60
- if i == 0: z = 0
 
61
  z = z ** 2 + complex(x, y)
62
- if np.abs(z) >= self.thr: z = self.thr; break
 
 
63
  fractal[ix, iy] = z
64
  self.fractal = np.abs(fractal.transpose())
65
  self.type_ = FractalType.Mandelbrot
66
  return self
67
 
68
- def plot(self, clim=None, **kwargs):
69
  if self.fractal is None:
70
- print('Nothing to plot. Generate a fractal first.')
71
  return None
72
- plt.matshow(self.fractal, **kwargs)
73
- plt.gca().axes.get_xaxis().set_visible(False)
74
- plt.gca().axes.get_yaxis().set_visible(False)
75
- plt.clim(clim)
76
- return plt.gcf()
77
-
78
- def persist_plot(self, filename, container, clim=None, **kwargs):
79
- if not os.path.isdir(container): os.mkdir(container)
80
- self.plot(clim=clim, **kwargs)
81
- plt.savefig(str(Path(container) / filename), png='png', dpi=None)
82
- plt.close(plt.gcf())
 
1
+ from enum import Enum
2
 
 
3
  import numpy as np
4
+ import plotly.express as px
 
5
 
6
 
7
  class FractalType(Enum):
 
10
 
11
 
12
  class FractalGenerator:
13
+ """Creates a single fractal object and either returns it as as a numpy array, plot it or persists it as an pgn
14
+ image. The output of this class is used by FractalTrainingValidationSet to generate training/val sets
15
+ Args:
16
+ complex_function -- complex function to make a Julia fractal
17
+ n -- fractal size will ne n*n
18
+ xlim,ylim -- tuples with the plotting region on the complex plane
19
+ thr -- once a function grows larger that this number is considered to be divergent to infinity
20
+ max_iter -- number of compositions of the complex function with itself
21
+ type_ -- fractal type
22
+ fractal -- numpy array with the fractal
23
+ """
24
 
25
  def __init__(self, n=256, xlim=(-2, 2), ylim=(-2, 2), thr=2, max_iter=10):
26
  self.type_ = None
 
32
  self.max_iter = max_iter
33
 
34
  def create_julia(self, complex_function=lambda z: np.sin(z ** 4 + 1.41)):
35
+ """Creates a fractal of the Julia family, the fractal is stored inside self.fractal"""
36
+ fractal = np.zeros((self.n, self.n), dtype="complex")
37
  x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
38
  y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
39
  for ix, x in enumerate(x_space):
40
  for iy, y in enumerate(y_space):
41
  for i in range(self.max_iter):
42
+ if i == 0:
43
+ z = complex(x, y)
44
  z = complex_function(z)
45
+ if np.abs(z) >= self.thr:
46
+ z = self.thr
47
+ break
48
  fractal[ix, iy] = z
49
  self.fractal = np.abs(fractal)
50
  self.type_ = FractalType.Julia
51
  return self
52
 
53
  def create_mandelbrot(self):
54
+ """Creates a fractal of the Mandelbrot family, the fractal is stored inside self.fractal"""
55
+ fractal = np.zeros((self.n, self.n), dtype="complex")
56
  x_space = np.linspace(self.xlim[0], self.xlim[1], self.n)
57
  y_space = np.linspace(self.ylim[0], self.ylim[1], self.n)
58
  for ix, x in enumerate(x_space):
59
  for iy, y in enumerate(y_space):
60
  for i in range(self.max_iter):
61
+ if i == 0:
62
+ z = 0
63
  z = z ** 2 + complex(x, y)
64
+ if np.abs(z) >= self.thr:
65
+ z = self.thr
66
+ break
67
  fractal[ix, iy] = z
68
  self.fractal = np.abs(fractal.transpose())
69
  self.type_ = FractalType.Mandelbrot
70
  return self
71
 
72
+ def plot(self, **kwargs):
73
  if self.fractal is None:
74
+ print("Nothing to plot. Generate a fractal first.")
75
  return None
76
+ fig = px.imshow(img=self.fractal, color_continuous_scale="orrd", **kwargs)
77
+ return fig
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,3 +1,2 @@
1
- matplotlib==3.3.3
2
- numba==0.52.0
3
- numpy==1.19.5
 
1
+ numpy==1.19.5
2
+ plotly==5.11.0