Spaces:
Runtime error
Runtime error
File size: 4,938 Bytes
26555ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import numpy
import torch.nn as nn
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers import StableDiffusionUpscalePipeline
"""
Will encounter following warning:
- This IS expected if you are initializing CLIPTextModel from the checkpoint of a model trained on another task
or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing CLIPTextModel from the checkpoint of a model
that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
https://github.com/CompVis/stable-diffusion/issues/97
according to this issue, this warning is safe.
This is expected since the vision backbone of the CLIP model is not needed to run Stable Diffusion.
You can safely ignore the warning, it is not an error.
This clip usage is from U-ViT and same with Stable Diffusion.
"""
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, device="cuda", max_length=77):
super().__init__()
# self.tokenizer = CLIPTokenizer.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
# self.text_encoder = CLIPTextModel.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
# TBD: change to https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/blob/main/config.json
# model_id = "stabilityai/stable-diffusion-x4-upscaler" # For VSR
# upscale_pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id)
upscale_pipeline = StableDiffusionUpscalePipeline.from_pretrained('./pretrained_models/upscaler4x')
self.tokenizer = upscale_pipeline.tokenizer
self.text_encoder = upscale_pipeline.text_encoder
self.device = device
self.max_length = max_length
self.freeze()
def freeze(self):
self.text_encoder = self.text_encoder.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, padding="max_length", max_length=self.max_length,
return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.text_encoder(input_ids=tokens)
# return outputs.last_hidden_state
return outputs[0]
def encode(self, text):
return self(text)
class TextEmbedder(nn.Module):
"""
Embeds text prompt into vector representations. Also handles text dropout for classifier-free guidance.
"""
def __init__(self, dropout_prob=0.1):
super().__init__()
self.text_encodder = FrozenCLIPEmbedder()
self.dropout_prob = dropout_prob
def token_drop(self, text_prompts, force_drop_ids=None):
"""
Drops text to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = numpy.random.uniform(0, 1, len(text_prompts)) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = list(numpy.where(drop_ids, "None", text_prompts))
# print(labels)
return labels
def forward(self, text_prompts, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
text_prompts = self.token_drop(text_prompts, force_drop_ids)
embeddings = self.text_encodder(text_prompts)
return embeddings
if __name__ == '__main__':
r"""
Returns:
Examples from CLIPTextModel:
```python
>>> from transformers import AutoTokenizer, CLIPTextModel
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
text_encoder = TextEmbedder(dropout_prob=0.00001).to(device)
text_encoder1 = FrozenCLIPEmbedder().to(device)
text_prompt = ["a photo of a cat", "a photo of a dog", 'a photo of a dog human']
# text_prompt = ('None', 'None', 'None')
output = text_encoder(text_prompts=text_prompt, train=True)
output1 = text_encoder1(text_prompt)
# print(output)
print(output.shape)
print(output1.shape)
print((output==output1).all()) |