Spaces:
Runtime error
Runtime error
File size: 8,911 Bytes
26555ee 004a144 19801e5 26555ee 004a144 13a8aa5 004a144 26555ee 19801e5 26555ee 19801e5 26555ee 08c8308 26555ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
from text_to_video import model_t2v_fun,setup_seed
from omegaconf import OmegaConf
import torch
import imageio
import os
import cv2
import pandas as pd
import torchvision
import random
from huggingface_hub import snapshot_download
config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
### download models
# snapshot_download('Vchitect/LaVie',cache_dir='./pretrained_models')
# snapshot_download('CompVis/stable-diffusion-v1-4',cache_dir='./pretrained_models')
# ------- get model ---------------
model_t2V = model_t2v_fun(args)
model_t2V.to(device)
if device == "cuda":
model_t2V.enable_xformers_memory_efficient_attention()
# model_t2V.enable_xformers_memory_efficient_attention()
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
def infer(prompt, seed_inp, ddim_steps,cfg):
if seed_inp!=-1:
setup_seed(seed_inp)
else:
seed_inp = random.choice(range(10000000))
setup_seed(seed_inp)
videos = model_t2V(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
print(videos[0].shape)
if not os.path.exists(args.output_folder):
os.mkdir(args.output_folder)
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
# imageio.mimwrite(args.output_folder + prompt.replace(' ', '_') + '.mp4', videos[0], fps=8)
# video = cv2.VideoCapture(args.output_folder + prompt.replace(' ', '_') + '.mp4')
# video = imageio.get_reader(args.output_folder + prompt.replace(' ', '_') + '.mp4', 'ffmpeg')
# video = model_t2V(prompt, seed_inp, ddim_steps)
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
print(1)
# def clean():
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
def clean():
return gr.Video.update(value=None)
title = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Intern·Vchitect (Text-to-Video)
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Apply Intern·Vchitect to generate a video
</p>
</div>
"""
# print(1)
with gr.Blocks(css='style.css') as demo:
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
with gr.Column():
with gr.Row(elem_id="col-container"):
# inputs = [prompt, seed_inp, ddim_steps]
# outputs = [video_out]
with gr.Column():
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
cfg = gr.Number(label="guidance_scale",value=7.5)
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in")
# with gr.Row():
# # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
# ex = gr.Examples(
# examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
# ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
# ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
# ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
# ['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
# ['a teddy bear walking on the street, 2k, high quality',100,50,7],
# ['a panda taking a selfie, 2k, high quality',400,50,7],
# ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
# ['jungle river at sunset, ultra quality',400,50,7],
# ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
# ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
# ['a confused grizzly bear in calculus class',1000,50,7]],
# fn = infer,
# inputs=[prompt, seed_inp, ddim_steps,cfg],
# # outputs=[video_out],
# cache_examples=False,
# examples_per_page = 6
# )
# ex.dataset.headers = [""]
with gr.Column():
submit_btn = gr.Button("Generate video")
clean_btn = gr.Button("Clean video")
# submit_btn = gr.Button("Generate video", size='sm')
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
video_out = gr.Video(label="Video result", elem_id="video-output")
# with gr.Row():
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
# submit_btn = gr.Button("Generate video", size='sm')
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
inputs = [prompt, seed_inp, ddim_steps,cfg]
outputs = [video_out]
# gr.Examples(
# value = [['An astronaut riding a horse',123,50],
# ['a panda eating bamboo on a rock',123,50],
# ['Spiderman is surfing',123,50]],
# label = "example of sampling",
# show_label = True,
# headers = ['prompt','seed','steps'],
# datatype = ['str','number','number'],
# row_count=4,
# col_count=(3,"fixed")
# )
ex = gr.Examples(
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
['a teddy bear walking on the street, 2k, high quality',100,50,7],
['a panda taking a selfie, 2k, high quality',400,50,7],
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
['jungle river at sunset, ultra quality',400,50,7],
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
['a confused grizzly bear in calculus class',1000,50,7]],
fn = infer,
inputs=[prompt, seed_inp, ddim_steps,cfg],
outputs=[video_out],
cache_examples=True,
)
ex.dataset.headers = [""]
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
# submit_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
submit_btn.click(infer, inputs, outputs)
# share_button.click(None, [], [], _js=share_js)
print(2)
demo.queue(max_size=12).launch()
|