Spaces:
Runtime error
Runtime error
Update base/text_to_video/__init__.py
Browse files- base/text_to_video/__init__.py +14 -14
base/text_to_video/__init__.py
CHANGED
@@ -22,24 +22,24 @@ args = OmegaConf.load("./base/configs/sample.yaml")
|
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
def model_t2v_fun(args):
|
25 |
-
|
26 |
sd_path = args.pretrained_path
|
27 |
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
|
28 |
-
|
29 |
# state_dict = find_model("./pretrained_models/lavie_base.pt")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
def setup_seed(seed):
|
42 |
-
|
43 |
-
|
44 |
|
45 |
|
|
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
def model_t2v_fun(args):
|
25 |
+
# sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
|
26 |
sd_path = args.pretrained_path
|
27 |
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
|
28 |
+
state_dict = find_model(args.pretrained_path + "/lavie_base.pt")
|
29 |
# state_dict = find_model("./pretrained_models/lavie_base.pt")
|
30 |
+
unet.load_state_dict(state_dict)
|
31 |
+
|
32 |
+
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
|
33 |
+
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
34 |
+
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
|
35 |
+
unet.eval()
|
36 |
+
vae.eval()
|
37 |
+
text_encoder_one.eval()
|
38 |
+
scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule)
|
39 |
+
return VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
|
40 |
|
41 |
def setup_seed(seed):
|
42 |
+
torch.manual_seed(seed)
|
43 |
+
torch.cuda.manual_seed_all(seed)
|
44 |
|
45 |
|