YaohuiW commited on
Commit
88e4948
·
1 Parent(s): 58839cd

Update base/text_to_video/__init__.py

Browse files
Files changed (1) hide show
  1. base/text_to_video/__init__.py +14 -14
base/text_to_video/__init__.py CHANGED
@@ -22,24 +22,24 @@ args = OmegaConf.load("./base/configs/sample.yaml")
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
23
 
24
  def model_t2v_fun(args):
25
- # sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
26
  sd_path = args.pretrained_path
27
  unet = get_models(args, sd_path).to(device, dtype=torch.float16)
28
- state_dict = find_model(args.pretrained_path + "/lavie_base.pt")
29
  # state_dict = find_model("./pretrained_models/lavie_base.pt")
30
- unet.load_state_dict(state_dict)
31
-
32
- vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
33
- tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
34
- text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
35
- unet.eval()
36
- vae.eval()
37
- text_encoder_one.eval()
38
- scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule)
39
- return VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
40
 
41
  def setup_seed(seed):
42
- torch.manual_seed(seed)
43
- torch.cuda.manual_seed_all(seed)
44
 
45
 
 
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
23
 
24
  def model_t2v_fun(args):
25
+ # sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
26
  sd_path = args.pretrained_path
27
  unet = get_models(args, sd_path).to(device, dtype=torch.float16)
28
+ state_dict = find_model(args.pretrained_path + "/lavie_base.pt")
29
  # state_dict = find_model("./pretrained_models/lavie_base.pt")
30
+ unet.load_state_dict(state_dict)
31
+
32
+ vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
33
+ tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
34
+ text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
35
+ unet.eval()
36
+ vae.eval()
37
+ text_encoder_one.eval()
38
+ scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule)
39
+ return VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
40
 
41
  def setup_seed(seed):
42
+ torch.manual_seed(seed)
43
+ torch.cuda.manual_seed_all(seed)
44
 
45