import gradio as gr from text_to_video import model_t2v_fun,setup_seed from omegaconf import OmegaConf import torch import imageio import os import cv2 import pandas as pd import torchvision import random config_path = "./base/configs/sample.yaml" args = OmegaConf.load("./base/configs/sample.yaml") device = "cuda" if torch.cuda.is_available() else "cpu" # ------- get model --------------- model_t2V = model_t2v_fun(args) model_t2V.to(device) if device == "cuda": model_t2V.enable_xformers_memory_efficient_attention() # model_t2V.enable_xformers_memory_efficient_attention() css = """ h1 { text-align: center; } #component-0 { max-width: 730px; margin: auto; } """ def infer(prompt, seed_inp, ddim_steps,cfg): if seed_inp!=-1: setup_seed(seed_inp) else: seed_inp = random.choice(range(10000000)) setup_seed(seed_inp) videos = model_t2V(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video print(videos[0].shape) if not os.path.exists(args.output_folder): os.mkdir(args.output_folder) torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8) # imageio.mimwrite(args.output_folder + prompt.replace(' ', '_') + '.mp4', videos[0], fps=8) # video = cv2.VideoCapture(args.output_folder + prompt.replace(' ', '_') + '.mp4') # video = imageio.get_reader(args.output_folder + prompt.replace(' ', '_') + '.mp4', 'ffmpeg') # video = model_t2V(prompt, seed_inp, ddim_steps) return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' print(1) # def clean(): # return gr.Image.update(value=None, visible=False), gr.Video.update(value=None) def clean(): return gr.Video.update(value=None) title = """

Intern·Vchitect (Text-to-Video)

Apply Intern·Vchitect to generate a video

""" # print(1) with gr.Blocks(css='style.css') as demo: gr.Markdown("
LaVie: Text-to-Video generation
") with gr.Column(): with gr.Row(elem_id="col-container"): # inputs = [prompt, seed_inp, ddim_steps] # outputs = [video_out] with gr.Column(): prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) cfg = gr.Number(label="guidance_scale",value=7.5) # seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in") # with gr.Row(): # # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in") # ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) # seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in") # ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) # ex = gr.Examples( # examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7], # ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7], # ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7], # ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7], # ['a teddy bear walking in the park, oil painting style, high quality',400,50,7], # ['a teddy bear walking on the street, 2k, high quality',100,50,7], # ['a panda taking a selfie, 2k, high quality',400,50,7], # ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7], # ['jungle river at sunset, ultra quality',400,50,7], # ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7], # ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7], # ['a confused grizzly bear in calculus class',1000,50,7]], # fn = infer, # inputs=[prompt, seed_inp, ddim_steps,cfg], # # outputs=[video_out], # cache_examples=False, # examples_per_page = 6 # ) # ex.dataset.headers = [""] with gr.Column(): submit_btn = gr.Button("Generate video") clean_btn = gr.Button("Clean video") # submit_btn = gr.Button("Generate video", size='sm') # video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512) video_out = gr.Video(label="Video result", elem_id="video-output") # with gr.Row(): # video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512) # submit_btn = gr.Button("Generate video", size='sm') # video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512) inputs = [prompt, seed_inp, ddim_steps,cfg] outputs = [video_out] # gr.Examples( # value = [['An astronaut riding a horse',123,50], # ['a panda eating bamboo on a rock',123,50], # ['Spiderman is surfing',123,50]], # label = "example of sampling", # show_label = True, # headers = ['prompt','seed','steps'], # datatype = ['str','number','number'], # row_count=4, # col_count=(3,"fixed") # ) ex = gr.Examples( examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7], ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7], ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7], ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7], ['a teddy bear walking in the park, oil painting style, high quality',400,50,7], ['a teddy bear walking on the street, 2k, high quality',100,50,7], ['a panda taking a selfie, 2k, high quality',400,50,7], ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7], ['jungle river at sunset, ultra quality',400,50,7], ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7], ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7], ['a confused grizzly bear in calculus class',1000,50,7]], fn = infer, inputs=[prompt, seed_inp, ddim_steps,cfg], outputs=[video_out], cache_examples=True, ) ex.dataset.headers = [""] # control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False) # submit_btn.click(clean, inputs=[], outputs=[video_out], queue=False) clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False) submit_btn.click(infer, inputs, outputs) # share_button.click(None, [], [], _js=share_js) print(2) demo.queue(max_size=12).launch(server_name="0.0.0.0", server_port=7860)