File size: 5,350 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path

import torch

from ...utils import is_mlu_available, is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter


description = "Create a default config file for Accelerate with only a few flags set."


def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, use_xpu: bool = False):
    """
    Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also
    set CPU if it is a CPU-only machine.

    Args:
        mixed_precision (`str`, *optional*, defaults to "no"):
            Mixed Precision to use. Should be one of "no", "fp16", or "bf16"
        save_location (`str`, *optional*, defaults to `default_json_config_file`):
            Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default
            location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting
            the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`.
        use_xpu (`bool`, *optional*, defaults to `False`):
            Whether to use XPU if available.
    """
    path = Path(save_location)
    path.parent.mkdir(parents=True, exist_ok=True)
    if path.exists():
        print(
            f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`."
        )
        return False
    mixed_precision = mixed_precision.lower()
    if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
        raise ValueError(
            f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}"
        )
    config = {
        "compute_environment": "LOCAL_MACHINE",
        "mixed_precision": mixed_precision,
    }
    if is_mlu_available():
        num_mlus = torch.mlu.device_count()
        config["num_processes"] = num_mlus
        config["use_cpu"] = False
        if num_mlus > 1:
            config["distributed_type"] = "MULTI_MLU"
        else:
            config["distributed_type"] = "NO"
    elif torch.cuda.is_available():
        num_gpus = torch.cuda.device_count()
        config["num_processes"] = num_gpus
        config["use_cpu"] = False
        if num_gpus > 1:
            config["distributed_type"] = "MULTI_GPU"
        else:
            config["distributed_type"] = "NO"
    elif is_xpu_available() and use_xpu:
        num_xpus = torch.xpu.device_count()
        config["num_processes"] = num_xpus
        config["use_cpu"] = False
        if num_xpus > 1:
            config["distributed_type"] = "MULTI_XPU"
        else:
            config["distributed_type"] = "NO"
    elif is_npu_available():
        num_npus = torch.npu.device_count()
        config["num_processes"] = num_npus
        config["use_cpu"] = False
        if num_npus > 1:
            config["distributed_type"] = "MULTI_NPU"
        else:
            config["distributed_type"] = "NO"
    else:
        num_xpus = 0
        config["use_cpu"] = True
        config["num_processes"] = 1
        config["distributed_type"] = "NO"
    config["debug"] = False
    config = ClusterConfig(**config)
    config.to_json_file(path)
    return path


def default_command_parser(parser, parents):
    parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
    parser.add_argument(
        "--config_file",
        default=default_json_config_file,
        help=(
            "The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
            "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
            "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
            "with 'huggingface'."
        ),
        dest="save_location",
    )

    parser.add_argument(
        "--mixed_precision",
        choices=["no", "fp16", "bf16"],
        type=str,
        help="Whether or not to use mixed precision training. "
        "Choose between FP16 and BF16 (bfloat16) training. "
        "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
        default="no",
    )
    parser.set_defaults(func=default_config_command)
    return parser


def default_config_command(args):
    config_file = write_basic_config(args.mixed_precision, args.save_location)
    if config_file:
        print(f"accelerate configuration saved at {config_file}")