File size: 18,263 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from copy import deepcopy

import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader

from accelerate.accelerator import Accelerator, GradientAccumulationPlugin
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, set_seed


def check_model_parameters(model_a, model_b, did_step, iteration, **kwargs):
    for param, grad_param in zip(model_a.parameters(), model_b.parameters()):
        if not param.requires_grad:
            continue
        if not did_step:
            # Grads should not be in sync
            assert (
                torch.allclose(param.grad, grad_param.grad, **kwargs) is False
            ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
        else:
            # Grads should be in sync
            assert (
                torch.allclose(param.grad, grad_param.grad, **kwargs) is True
            ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"


def step_model(model, input, target, accelerator, do_backward=True):
    model.train()
    output = model(input)
    loss = F.mse_loss(output, target.to(output.device))
    if not do_backward:
        loss /= accelerator.gradient_accumulation_steps
        loss.backward()
    else:
        accelerator.backward(loss)


def get_training_setup(accelerator, sched=False):
    "Returns everything needed to perform basic training"
    set_seed(42)
    model = RegressionModel()
    ddp_model = deepcopy(model)
    dset = RegressionDataset(length=80)
    dataloader = DataLoader(dset, batch_size=16)
    model.to(accelerator.device)
    if sched:
        opt = AdamW(params=model.parameters(), lr=1e-3)
        ddp_opt = AdamW(params=ddp_model.parameters(), lr=1e-3)
        sched = LambdaLR(opt, lr_lambda=lambda epoch: epoch**0.65)
        ddp_sched = LambdaLR(ddp_opt, lr_lambda=lambda epoch: epoch**0.65)
    # Make a copy of `model`
    if sched:
        ddp_model, ddp_opt, ddp_sched, dataloader = accelerator.prepare(ddp_model, ddp_opt, ddp_sched, dataloader)
    else:
        ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader)
    if sched:
        return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
    return model, ddp_model, dataloader


def test_noop_sync(accelerator):
    # Test when on a single CPU or GPU that the context manager does nothing
    model, ddp_model, dataloader = get_training_setup(accelerator)
    # Use a single batch
    ddp_input, ddp_target = next(iter(dataloader)).values()
    for iteration in range(3):
        # Gather the distributed inputs and targs for the base model
        input, target = accelerator.gather((ddp_input, ddp_target))
        input, target = input.to(accelerator.device), target.to(accelerator.device)
        # Perform our initial ground truth step in non "DDP"
        step_model(model, input, target, accelerator)
        # Do "gradient accumulation" (noop)
        if iteration % 2 == 0:
            # Accumulate grads locally
            with accelerator.no_sync(ddp_model):
                step_model(ddp_model, ddp_input, ddp_target, accelerator)
        else:
            # Sync grads
            step_model(ddp_model, ddp_input, ddp_target, accelerator)

        # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
        check_model_parameters(model, ddp_model, True, iteration)
        for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
            if not param.requires_grad:
                continue
            assert torch.allclose(
                param.grad, ddp_param.grad
            ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"

        # Shuffle ddp_input on each iteration
        torch.manual_seed(1337 + iteration)
        ddp_input = ddp_input[torch.randperm(len(ddp_input))]


def test_distributed_sync(accelerator):
    # Test on distributed setup that context manager behaves properly
    model, ddp_model, dataloader = get_training_setup(accelerator)
    # Use a single batch
    ddp_input, ddp_target = next(iter(dataloader)).values()
    for iteration in range(3):
        # Gather the distributed inputs and targs for the base model
        input, target = accelerator.gather((ddp_input, ddp_target))
        input, target = input.to(accelerator.device), target.to(accelerator.device)
        # Perform our initial ground truth step in non "DDP"
        step_model(model, input, target, accelerator)
        # Do "gradient accumulation" (noop)
        if iteration % 2 == 0:
            # Accumulate grads locally
            with accelerator.no_sync(ddp_model):
                step_model(ddp_model, ddp_input, ddp_target, accelerator)
        else:
            # Sync grads
            step_model(ddp_model, ddp_input, ddp_target, accelerator)

        # DDP model and model should only be in sync when not (iteration % 2 == 0)
        for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
            if not param.requires_grad:
                continue
            if iteration % 2 == 0:
                # Grads should not be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is False
                ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
            else:
                # Grads should be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is True
                ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"

        # Shuffle ddp_input on each iteration
        torch.manual_seed(1337 + iteration)
        ddp_input = ddp_input[torch.randperm(len(ddp_input))]


def test_distributed_sync_multiple_fwd(accelerator):
    # Test on distributed setup that context manager behaves properly when used with multiple forwards followed by multiple backwards
    model, ddp_model, dataloader = get_training_setup(accelerator)
    # Do multiple forwards
    losses = []
    num_iterations = 3
    for iteration in range(num_iterations):
        ddp_input, ddp_target = next(iter(dataloader)).values()

        # Gather the distributed inputs and targs for the base model
        input, target = accelerator.gather((ddp_input, ddp_target))
        input, target = input.to(accelerator.device), target.to(accelerator.device)

        # Perform our initial ground truth step in non "DDP"
        step_model(model, input, target, accelerator)

        # Accumulate grads locally
        with accelerator.no_sync(ddp_model):
            ddp_output = ddp_model(ddp_input)
            loss = F.mse_loss(ddp_output, ddp_target.to(ddp_output.device))
            losses.append(loss)

    # Do multiple backwards and sync only at the last backward
    for iteration in range(num_iterations):
        loss = losses[iteration]

        if iteration < num_iterations - 1:
            # Accumulate grads locally
            accelerator.backward(loss)

            # DDP model and model should only be in sync after last backward
            for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
                if not param.requires_grad:
                    continue
                # Grads should not be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is False
                ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"

        else:
            # Sync grads if last backward
            with accelerator.trigger_sync_in_backward(ddp_model):
                accelerator.backward(loss)

            # DDP model and model should only be in sync after last backward
            for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
                if not param.requires_grad:
                    continue
                # Grads should be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is True
                ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"


def test_gradient_accumulation(split_batches=False, dispatch_batches=False, sync_each_batch=False):
    gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2, sync_each_batch=sync_each_batch)
    accelerator = Accelerator(
        split_batches=split_batches,
        dispatch_batches=dispatch_batches,
        gradient_accumulation_plugin=gradient_accumulation_plugin,
    )
    # Test that context manager behaves properly
    model, ddp_model, dataloader = get_training_setup(accelerator)
    for iteration, batch in enumerate(dataloader):
        ddp_input, ddp_target = batch.values()
        # Gather the distributed inputs and targs for the base model
        input, target = accelerator.gather((ddp_input, ddp_target))
        input, target = input.to(accelerator.device), target.to(accelerator.device)
        # Perform our initial ground truth step in non "DDP"
        step_model(model, input, target, accelerator, False)
        # Do "gradient accumulation" (noop)
        with accelerator.accumulate(ddp_model):
            step_model(ddp_model, ddp_input, ddp_target, accelerator)

        # DDP model and model should only be in sync when not (iteration % 2 == 0)
        for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
            if not param.requires_grad:
                continue
            if ((iteration + 1) % 2 == 0) or (iteration == len(dataloader) - 1) or sync_each_batch:
                # Grads should be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is True
                ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
            else:
                # Grads should not be in sync
                assert (
                    torch.allclose(param.grad, ddp_param.grad) is False
                ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"

        # Shuffle ddp_input on each iteration
        torch.manual_seed(1337 + iteration)
        ddp_input = ddp_input[torch.randperm(len(ddp_input))]
    GradientState._reset_state()


def test_gradient_accumulation_with_opt_and_scheduler(
    split_batches=False, dispatch_batches=False, sync_each_batch=False
):
    gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2, sync_each_batch=sync_each_batch)
    accelerator = Accelerator(
        split_batches=split_batches,
        dispatch_batches=dispatch_batches,
        gradient_accumulation_plugin=gradient_accumulation_plugin,
    )
    # Test that context manager behaves properly
    model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched = get_training_setup(accelerator, True)
    for iteration, batch in enumerate(dataloader):
        ddp_input, ddp_target = batch.values()
        # Gather the distributed inputs and targs for the base model
        input, target = accelerator.gather((ddp_input, ddp_target))
        input, target = input.to(accelerator.device), target.to(accelerator.device)
        # Perform our initial ground truth step in non "DDP"
        model.train()
        ddp_model.train()
        step_model(model, input, target, accelerator, False)
        opt.step()

        if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch:
            if split_batches:
                sched.step()
            else:
                for _ in range(accelerator.num_processes):
                    sched.step()

        # Perform gradient accumulation under wrapper
        with accelerator.accumulate(ddp_model):
            step_model(ddp_model, ddp_input, ddp_target, accelerator)
            ddp_opt.step()
            ddp_sched.step()

        # Learning rates should be the same
        assert (
            opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
        ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'
        did_step = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch
        if accelerator.num_processes > 1:
            check_model_parameters(
                model,
                ddp_model,
                did_step,
                iteration,
                rtol=1e-3,  # somehow needs a relative tolerance
            )

        if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch:
            opt.zero_grad()  # needs to be guarded by logic as to when we should zero grads
        ddp_opt.zero_grad()

        # Shuffle ddp_input on each iteration
        torch.manual_seed(1337 + iteration)
    GradientState._reset_state()


def test_dataloader_break():
    accelerator = Accelerator()

    first_dset = RegressionDataset(length=80)
    first_dataloader = DataLoader(first_dset, batch_size=16)
    second_dset = RegressionDataset(length=96)
    second_dataloader = DataLoader(second_dset, batch_size=16)
    first_dataloader, second_dataloader = accelerator.prepare(first_dataloader, second_dataloader)
    assert accelerator.gradient_state.active_dataloader is None
    for iteration, _ in enumerate(first_dataloader):
        assert id(accelerator.gradient_state.active_dataloader) == id(first_dataloader)
        if iteration < len(first_dataloader) - 1:
            assert not accelerator.gradient_state.end_of_dataloader
            if iteration == 1:
                for batch_num, _ in enumerate(second_dataloader):
                    assert id(accelerator.gradient_state.active_dataloader) == id(second_dataloader)
                    if batch_num < len(second_dataloader) - 1:
                        assert not accelerator.gradient_state.end_of_dataloader
                    else:
                        assert accelerator.gradient_state.end_of_dataloader
        else:
            assert accelerator.gradient_state.end_of_dataloader
    assert accelerator.gradient_state.active_dataloader is None


def main():
    accelerator = Accelerator()
    state = accelerator.state
    if state.local_process_index == 0:
        print("**Test `accumulate` gradient accumulation with dataloader break**")
    if state.distributed_type != DistributedType.XLA:
        test_dataloader_break()
    if state.distributed_type == DistributedType.NO:
        if state.local_process_index == 0:
            print("**Test NOOP `no_sync` context manager**")
        test_noop_sync(accelerator)
    if state.distributed_type in (
        DistributedType.MULTI_GPU,
        DistributedType.MULTI_NPU,
        DistributedType.MULTI_MLU,
        DistributedType.MULTI_CPU,
    ):
        if state.local_process_index == 0:
            print("**Test Distributed `no_sync` context manager**")
        test_distributed_sync(accelerator)
        if state.local_process_index == 0:
            print("**Test Distributed `no_sync` context manager with multiple forwards**")
        test_distributed_sync_multiple_fwd(accelerator)
    if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU):
        for split_batch in [True, False]:
            for dispatch_batches in [True, False]:
                for sync_each_batch in [True, False]:
                    if state.local_process_index == 0:
                        print(
                            "**Test `accumulate` gradient accumulation, ",
                            f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}` and `sync_each_batch={sync_each_batch}`**",
                        )
                    test_gradient_accumulation(split_batch, dispatch_batches, sync_each_batch)

    # Currently will break on torch 2.0 +, need to investigate why
    if state.local_process_index == 0:
        print(
            "**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
            "`split_batches=False`, `dispatch_batches=False`, `sync_each_batch=False`**",
        )
    test_gradient_accumulation_with_opt_and_scheduler()
    if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU):
        for split_batch in [True, False]:
            for dispatch_batches in [True, False]:
                for sync_each_batch in [True, False]:
                    if not split_batch and not dispatch_batches and not sync_each_batch:
                        continue
                    if state.local_process_index == 0:
                        print(
                            "**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
                            f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}` and `sync_each_batch={sync_each_batch}`**",
                        )
                    test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches, sync_each_batch)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()