Spaces:
Running
Running
File size: 14,451 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import asyncio
import json
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union, cast
from cassandra.cluster import ResponseFuture
from cassio.table.cql import (
CREATE_ENTRIES_INDEX_CQL_TEMPLATE,
SELECT_CQL_TEMPLATE,
CQLOpType,
)
from cassio.table.table_types import (
ColumnSpecType,
MetadataIndexingMode,
MetadataIndexingPolicy,
RowType,
is_metadata_field_indexed,
)
from .base_table import BaseTableMixin
class MetadataMixin(BaseTableMixin):
def __init__(
self,
*pargs: Any,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
**kwargs: Any,
) -> None:
self.metadata_indexing_policy = self._normalize_metadata_indexing_policy(
metadata_indexing
)
super().__init__(*pargs, **kwargs)
@staticmethod
def _normalize_metadata_indexing_policy(
metadata_indexing: Union[Tuple[str, Iterable[str]], str]
) -> MetadataIndexingPolicy:
mode: MetadataIndexingMode
fields: Set[str]
# metadata indexing policy normalization:
if isinstance(metadata_indexing, str):
if metadata_indexing.lower() == "all":
mode, fields = (MetadataIndexingMode.DEFAULT_TO_SEARCHABLE, set())
elif metadata_indexing.lower() == "none":
mode, fields = (MetadataIndexingMode.DEFAULT_TO_UNSEARCHABLE, set())
else:
raise ValueError(
f"Unsupported metadata_indexing value '{metadata_indexing}'"
)
else:
assert len(metadata_indexing) == 2
# it's a 2-tuple (mode, fields) still to normalize
_mode, _field_spec = metadata_indexing
fields = {_field_spec} if isinstance(_field_spec, str) else set(_field_spec)
if _mode.lower() in {
"default_to_unsearchable",
"allowlist",
"allow",
"allow_list",
}:
mode = MetadataIndexingMode.DEFAULT_TO_UNSEARCHABLE
elif _mode.lower() in {
"default_to_searchable",
"denylist",
"deny",
"deny_list",
}:
mode = MetadataIndexingMode.DEFAULT_TO_SEARCHABLE
else:
raise ValueError(
f"Unsupported metadata indexing mode specification '{_mode}'"
)
return (mode, fields)
def _schema_da(self) -> List[ColumnSpecType]:
return super()._schema_da() + [
("attributes_blob", "TEXT"),
("metadata_s", "MAP<TEXT,TEXT>"),
]
@staticmethod
def _get_create_entries_index_cql(entries_index_column: str) -> str:
index_name = f"eidx_{entries_index_column}"
index_column = f"{entries_index_column}"
create_index_cql = CREATE_ENTRIES_INDEX_CQL_TEMPLATE.format(
index_name=index_name,
index_column=index_column,
)
return create_index_cql
def db_setup(self) -> None:
# Currently: an 'entries' index on the metadata_s column
super().db_setup()
#
for entries_index_column in ["metadata_s"]:
create_index_cql = self._get_create_entries_index_cql(entries_index_column)
self.execute_cql(create_index_cql, op_type=CQLOpType.SCHEMA)
async def adb_setup(self) -> None:
# Currently: an 'entries' index on the metadata_s column
await super().adb_setup()
#
for entries_index_column in ["metadata_s"]:
create_index_cql = self._get_create_entries_index_cql(entries_index_column)
await self.aexecute_cql(create_index_cql, op_type=CQLOpType.SCHEMA)
@staticmethod
def _serialize_md_dict(md_dict: Dict[str, Any]) -> str:
return json.dumps(md_dict, separators=(",", ":"), sort_keys=True)
@staticmethod
def _deserialize_md_dict(md_string: str) -> Dict[str, Any]:
return cast(Dict[str, Any], json.loads(md_string))
@staticmethod
def _coerce_string(value: Any) -> str:
if isinstance(value, str):
return value
elif isinstance(value, bool):
# bool MUST come before int in this chain of ifs!
return json.dumps(value)
elif isinstance(value, int):
# we don't want to store '1' and '1.0' differently
# for the sake of metadata-filtered retrieval:
return json.dumps(float(value))
elif isinstance(value, float):
return json.dumps(value)
elif value is None:
return json.dumps(value)
else:
# when all else fails ...
return str(value)
def _split_metadata_fields(self, md_dict: Dict[str, Any]) -> Dict[str, Any]:
"""
Split the *indexed* part of the metadata in separate parts,
one per Cassandra column.
Currently: everything gets cast to a string and goes to a single table
column. This means:
- strings are fine
- floats and integers v: they are cast to str(v)
- booleans: 'true'/'false' (JSON style)
- None => 'null' (JSON style)
- anything else v => str(v), no questions asked
Caveat: one gets strings back when reading metadata
"""
# TODO: more care about types here
stringy_part = {k: self._coerce_string(v) for k, v in md_dict.items()}
return {
"metadata_s": stringy_part,
}
def _normalize_row(self, raw_row: Any) -> Dict[str, Any]:
md_columns_defaults: Dict[str, Any] = {
"metadata_s": {},
}
pre_normalized = super()._normalize_row(raw_row)
#
row_rest = {
k: v
for k, v in pre_normalized.items()
if k not in md_columns_defaults
if k != "attributes_blob"
}
mergee_md_fields = {
k: v for k, v in pre_normalized.items() if k in md_columns_defaults
}
normalized_mergee_md_fields = {
k: v if v is not None else md_columns_defaults[k]
for k, v in mergee_md_fields.items()
}
r_md_from_s = {
k: v for k, v in normalized_mergee_md_fields["metadata_s"].items()
}
#
raw_attr_blob = pre_normalized.get("attributes_blob")
if raw_attr_blob is not None:
r_attrs = self._deserialize_md_dict(raw_attr_blob)
else:
r_attrs = {}
#
row_metadata = {
"metadata": {
**r_attrs,
**r_md_from_s,
},
}
#
normalized = {
**row_metadata,
**row_rest,
}
return normalized
def _normalize_kwargs(self, args_dict: Dict[str, Any]) -> Dict[str, Any]:
_metadata_input_dict = args_dict.get("metadata", {})
# separate indexed and non-indexed (=attributes) as per indexing policy
metadata_indexed_dict = {
k: v
for k, v in _metadata_input_dict.items()
if is_metadata_field_indexed(k, self.metadata_indexing_policy)
}
attributes_dict = {
k: self._coerce_string(v)
for k, v in _metadata_input_dict.items()
if not is_metadata_field_indexed(k, self.metadata_indexing_policy)
}
#
if attributes_dict != {}:
attributes_fields = {
"attributes_blob": self._serialize_md_dict(attributes_dict)
}
else:
attributes_fields = {}
#
new_metadata_fields = {
k: v
for k, v in self._split_metadata_fields(metadata_indexed_dict).items()
if v != {} and v != set()
}
#
new_args_dict = {
**{k: v for k, v in args_dict.items() if k != "metadata"},
**attributes_fields,
**new_metadata_fields,
}
return super()._normalize_kwargs(new_args_dict)
def _extract_where_clause_blocks(
self, args_dict: Any
) -> Tuple[Any, List[str], Tuple[Any, ...]]:
# This always happens after a corresponding _normalize_kwargs,
# so the metadata, if present, appears as split-fields.
assert "metadata" not in args_dict
if "attributes_blob" in args_dict:
raise ValueError("Non-indexed metadata fields cannot be used in queries.")
md_keys = {"metadata_s"}
new_args_dict = {k: v for k, v in args_dict.items() if k not in md_keys}
# Here the "metadata" entry is made into specific where clauses
split_metadata = {k: v for k, v in args_dict.items() if k in md_keys}
these_wc_blocks: List[str] = []
these_wc_vals_list: List[Any] = []
# WHERE creation:
for k, v in sorted(split_metadata.get("metadata_s", {}).items()):
these_wc_blocks.append(f"metadata_s['{k}'] = %s")
these_wc_vals_list.append(v)
# no new kwargs keys are created, all goes to WHERE
this_args_dict: Dict[str, Any] = {}
these_wc_vals = tuple(these_wc_vals_list)
# ready to defer to superclass(es), then collate-and-return
(s_args_dict, s_wc_blocks, s_wc_vals) = super()._extract_where_clause_blocks(
new_args_dict
)
return (
{**this_args_dict, **s_args_dict},
these_wc_blocks + s_wc_blocks,
tuple(list(these_wc_vals) + list(s_wc_vals)),
)
def _get_find_entries_cql(
self, n: int, **kwargs: Any
) -> Tuple[str, Tuple[Any, ...]]:
columns_desc, where_clause, get_cql_vals = self._parse_select_core_params(
**kwargs
)
limit_clause = "LIMIT %s"
limit_cql_vals = [n]
select_vals = tuple(list(get_cql_vals) + limit_cql_vals)
#
select_cql = SELECT_CQL_TEMPLATE.format(
columns_desc=columns_desc,
where_clause=where_clause,
limit_clause=limit_clause,
)
return select_cql, select_vals
def find_entries(self, n: int, **kwargs: Any) -> Iterable[RowType]:
select_cql, select_vals = self._get_find_entries_cql(n, **kwargs)
result_set = self.execute_cql(
select_cql, args=select_vals, op_type=CQLOpType.READ
)
return (self._normalize_row(result) for result in result_set)
def find_entries_async(self, n: int, **kwargs: Any) -> ResponseFuture:
raise NotImplementedError("Asynchronous reads are not supported.")
async def afind_entries(self, n: int, **kwargs: Any) -> Iterable[RowType]:
select_cql, select_vals = self._get_find_entries_cql(n, **kwargs)
result_set = await self.aexecute_cql(
select_cql, args=select_vals, op_type=CQLOpType.READ
)
return (self._normalize_row(result) for result in result_set)
@staticmethod
def _get_to_delete_and_visited(
n: Optional[int],
batch_size: int,
visited_tuples: Set[Tuple[Any, ...]],
del_pkargs: Optional[List[Any]] = None,
) -> Tuple[int, Set[Tuple[Any, ...]]]:
if del_pkargs is not None:
visited_tuples.update(tuple(del_pkarg) for del_pkarg in del_pkargs)
if n is not None:
to_delete = min(batch_size, n - len(visited_tuples))
else:
to_delete = batch_size
return to_delete, visited_tuples
def find_and_delete_entries(
self, n: Optional[int] = None, batch_size: int = 20, **kwargs: Any
) -> int:
# Use `find_entries` to delete entries based
# on queries with metadata, etc. Suitable when `find_entries` is a fit.
# Returns the number of rows supposedly deleted.
# Warning: reads before writing. Not very efficient (nor Cassandraic).
#
# TODO: Use the 'columns' for a narrowed projection
# TODO: decouple finding and deleting (streaming) for faster performance
primary_key_cols = [col for col, _ in self._schema_primary_key()]
#
batch_size = 20
to_delete, visited_tuples = self._get_to_delete_and_visited(
n, batch_size, set()
)
while to_delete > 0:
del_pkargs = [
[found_row[pkc] for pkc in primary_key_cols]
for found_row in self.find_entries(n=to_delete, **kwargs)
]
if del_pkargs == []:
break
d_futures = [
self.delete_async(
**{pkc: pkv for pkc, pkv in zip(primary_key_cols, del_pkarg)}
)
for del_pkarg in del_pkargs
if tuple(del_pkarg) not in visited_tuples
]
if d_futures == []:
break
for d_future in d_futures:
_ = d_future.result()
to_delete, visited_tuples = self._get_to_delete_and_visited(
n, batch_size, visited_tuples, del_pkargs
)
#
return len(visited_tuples)
def find_and_delete_entries_async(self, **kwargs: Any) -> ResponseFuture:
raise NotImplementedError("Asynchronous reads are not supported.")
async def afind_and_delete_entries(
self, n: Optional[int] = None, batch_size: int = 20, **kwargs: Any
) -> int:
primary_key_cols = [col for col, _ in self._schema_primary_key()]
#
batch_size = 20
to_delete, visited_tuples = self._get_to_delete_and_visited(
n, batch_size, set()
)
while to_delete > 0:
del_pkargs = [
[found_row[pkc] for pkc in primary_key_cols]
for found_row in await self.afind_entries(n=to_delete, **kwargs)
]
delete_coros = [
self.adelete(
**{pkc: pkv for pkc, pkv in zip(primary_key_cols, del_pkarg)}
)
for del_pkarg in del_pkargs
if tuple(del_pkarg) not in visited_tuples
]
if not delete_coros:
break
await asyncio.gather(*delete_coros)
to_delete, visited_tuples = self._get_to_delete_and_visited(
n, batch_size, visited_tuples, del_pkargs
)
#
return len(visited_tuples)
|