Spaces:
Running
Running
File size: 9,506 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
try:
import exllama
except ImportError:
raise ImportError(
"Could not import `exllama` package. "
"Please install it using `pip install ctransformers[gptq]`"
)
import re
from pathlib import Path
from typing import (
Generator,
List,
Optional,
Sequence,
Union,
)
import torch
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
from exllama.generator import ExLlamaGenerator
from ..llm import Config, doc, get
class LLM:
def __init__(
self,
model_path: str,
*,
config: Optional[Config] = None,
):
"""Loads the language model from a local file.
Args:
model_path: The path to a model directory.
config: `Config` object.
"""
model_path = Path(model_path).resolve()
config = config or Config()
self._model_path = model_path
self._config = config
files = [
(f.stat().st_size, f)
for f in model_path.iterdir()
if f.is_file() and f.name.endswith(".safetensors")
]
if not files:
raise ValueError(f"No model file found in directory '{model_path}'")
model_file = min(files)[1]
model_config = ExLlamaConfig(str(model_path / "config.json"))
model_config.model_path = str(model_file)
model = ExLlama(model_config)
tokenizer = ExLlamaTokenizer(str(model_path / "tokenizer.model"))
cache = ExLlamaCache(model)
generator = ExLlamaGenerator(model, tokenizer, cache)
self._model = model
self._tokenizer = tokenizer
self._generator = generator
@property
def model_path(self) -> str:
"""The path to the model directory."""
return self._model_path
@property
def config(self) -> Config:
"""The config object."""
return self._config
@property
def eos_token_id(self) -> int:
"""The end-of-sequence token."""
return self._tokenizer.eos_token_id
@property
def vocab_size(self) -> int:
"""The number of tokens in vocabulary."""
return self._model.config.vocab_size
@property
def context_length(self) -> int:
"""The context length of model."""
return self._model.config.max_seq_len
def tokenize(self, text: str) -> List[int]:
"""Converts a text into list of tokens.
Args:
text: The text to tokenize.
Returns:
The list of tokens.
"""
return self._tokenizer.encode(text)
def detokenize(
self,
tokens: Sequence[int],
decode: bool = True,
) -> Union[str, bytes]:
"""Converts a list of tokens to text.
Args:
tokens: The list of tokens.
decode: Whether to decode the text as UTF-8 string.
Returns:
The combined text of all tokens.
"""
if isinstance(tokens, int):
tokens = [tokens]
if isinstance(tokens, list):
tokens = torch.tensor(tokens)
return self._tokenizer.decode(tokens)
def is_eos_token(self, token: int) -> bool:
"""Checks if a token is an end-of-sequence token.
Args:
token: The token to check.
Returns:
`True` if the token is an end-of-sequence token else `False`.
"""
return token == self.eos_token_id
def reset(self) -> None:
self._generator.reset()
@doc
def generate(
self,
tokens: Sequence[int],
*,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None,
) -> Generator[int, None, None]:
"""Generates new tokens from a list of tokens.
Args:
tokens: The list of tokens to generate tokens from.
{params}
Returns:
The generated tokens.
"""
generator = self._generator
config = self.config
top_k = get(top_k, config.top_k)
top_p = get(top_p, config.top_p)
temperature = get(temperature, config.temperature)
repetition_penalty = get(repetition_penalty, config.repetition_penalty)
last_n_tokens = get(last_n_tokens, config.last_n_tokens)
reset = get(reset, config.reset)
if reset:
self.reset()
generator.settings.top_k = top_k
generator.settings.top_p = top_p
generator.settings.temperature = temperature
generator.settings.token_repetition_penalty_max = repetition_penalty
generator.settings.token_repetition_penalty_sustain = last_n_tokens
generator.settings.token_repetition_penalty_decay = last_n_tokens // 2
if isinstance(tokens, list):
tokens = torch.tensor(tokens).unsqueeze(0)
assert tokens.shape[0] == 1
generator.gen_begin(tokens)
while True:
token = generator.gen_single_token()
token = token[0][0].item()
if self.is_eos_token(token):
break
yield token
def _stream(
self,
prompt: str,
*,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
reset: Optional[bool] = None,
) -> Generator[str, None, None]:
generator = self._generator
config = self.config
max_new_tokens = get(max_new_tokens, config.max_new_tokens)
stop = get(stop, config.stop) or []
if isinstance(stop, str):
stop = [stop]
tokens = self.tokenize(prompt)
max_new_tokens = min(max_new_tokens, self.context_length - tokens.shape[1])
stop_regex = re.compile("|".join(map(re.escape, stop)))
count = 0
length = len(self.detokenize(tokens[0]))
text = ""
for token in self.generate(
tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
last_n_tokens=last_n_tokens,
seed=seed,
batch_size=batch_size,
threads=threads,
reset=reset,
):
new_text = self.detokenize(generator.sequence_actual[0])[length:]
length += len(new_text)
text += new_text
# https://github.com/abetlen/llama-cpp-python/blob/1a13d76c487df1c8560132d10bda62d6e2f4fa93/llama_cpp/llama.py#L686-L706
# Check if one of the stop sequences is part of the text.
# Note that the stop sequence may not always be at the end of text.
if stop:
match = stop_regex.search(text)
if match:
text = text[: match.start()]
break
# Avoid sending the longest suffix of text which is also a prefix
# of a stop sequence, as it can form a stop sequence with the text
# generated later.
longest = 0
for s in stop:
for i in range(len(s), 0, -1):
if text.endswith(s[:i]):
longest = max(i, longest)
break
end = len(text) - longest
if end > 0:
yield text[:end]
text = text[end:]
count += 1
if count >= max_new_tokens:
break
if text:
yield text
@doc
def __call__(
self,
prompt: str,
*,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None,
) -> Union[str, Generator[str, None, None]]:
"""Generates text from a prompt.
Args:
prompt: The prompt to generate text from.
{params}
Returns:
The generated text.
"""
config = self.config
stream = get(stream, config.stream)
text = self._stream(
prompt,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
last_n_tokens=last_n_tokens,
seed=seed,
batch_size=batch_size,
threads=threads,
stop=stop,
reset=reset,
)
if stream:
return text
return "".join(text)
|