File size: 9,506 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
try:
    import exllama
except ImportError:
    raise ImportError(
        "Could not import `exllama` package. "
        "Please install it using `pip install ctransformers[gptq]`"
    )

import re
from pathlib import Path
from typing import (
    Generator,
    List,
    Optional,
    Sequence,
    Union,
)

import torch
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
from exllama.generator import ExLlamaGenerator

from ..llm import Config, doc, get


class LLM:
    def __init__(
        self,
        model_path: str,
        *,
        config: Optional[Config] = None,
    ):
        """Loads the language model from a local file.

        Args:
            model_path: The path to a model directory.
            config: `Config` object.
        """
        model_path = Path(model_path).resolve()
        config = config or Config()
        self._model_path = model_path
        self._config = config

        files = [
            (f.stat().st_size, f)
            for f in model_path.iterdir()
            if f.is_file() and f.name.endswith(".safetensors")
        ]
        if not files:
            raise ValueError(f"No model file found in directory '{model_path}'")
        model_file = min(files)[1]

        model_config = ExLlamaConfig(str(model_path / "config.json"))
        model_config.model_path = str(model_file)

        model = ExLlama(model_config)
        tokenizer = ExLlamaTokenizer(str(model_path / "tokenizer.model"))
        cache = ExLlamaCache(model)
        generator = ExLlamaGenerator(model, tokenizer, cache)

        self._model = model
        self._tokenizer = tokenizer
        self._generator = generator

    @property
    def model_path(self) -> str:
        """The path to the model directory."""
        return self._model_path

    @property
    def config(self) -> Config:
        """The config object."""
        return self._config

    @property
    def eos_token_id(self) -> int:
        """The end-of-sequence token."""
        return self._tokenizer.eos_token_id

    @property
    def vocab_size(self) -> int:
        """The number of tokens in vocabulary."""
        return self._model.config.vocab_size

    @property
    def context_length(self) -> int:
        """The context length of model."""
        return self._model.config.max_seq_len

    def tokenize(self, text: str) -> List[int]:
        """Converts a text into list of tokens.

        Args:
            text: The text to tokenize.

        Returns:
            The list of tokens.
        """
        return self._tokenizer.encode(text)

    def detokenize(
        self,
        tokens: Sequence[int],
        decode: bool = True,
    ) -> Union[str, bytes]:
        """Converts a list of tokens to text.

        Args:
            tokens: The list of tokens.
            decode: Whether to decode the text as UTF-8 string.

        Returns:
            The combined text of all tokens.
        """
        if isinstance(tokens, int):
            tokens = [tokens]
        if isinstance(tokens, list):
            tokens = torch.tensor(tokens)
        return self._tokenizer.decode(tokens)

    def is_eos_token(self, token: int) -> bool:
        """Checks if a token is an end-of-sequence token.

        Args:
            token: The token to check.

        Returns:
            `True` if the token is an end-of-sequence token else `False`.
        """
        return token == self.eos_token_id

    def reset(self) -> None:
        self._generator.reset()

    @doc
    def generate(
        self,
        tokens: Sequence[int],
        *,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        reset: Optional[bool] = None,
    ) -> Generator[int, None, None]:
        """Generates new tokens from a list of tokens.

        Args:
            tokens: The list of tokens to generate tokens from.
            {params}

        Returns:
            The generated tokens.
        """
        generator = self._generator
        config = self.config
        top_k = get(top_k, config.top_k)
        top_p = get(top_p, config.top_p)
        temperature = get(temperature, config.temperature)
        repetition_penalty = get(repetition_penalty, config.repetition_penalty)
        last_n_tokens = get(last_n_tokens, config.last_n_tokens)
        reset = get(reset, config.reset)

        if reset:
            self.reset()
        generator.settings.top_k = top_k
        generator.settings.top_p = top_p
        generator.settings.temperature = temperature
        generator.settings.token_repetition_penalty_max = repetition_penalty
        generator.settings.token_repetition_penalty_sustain = last_n_tokens
        generator.settings.token_repetition_penalty_decay = last_n_tokens // 2

        if isinstance(tokens, list):
            tokens = torch.tensor(tokens).unsqueeze(0)
        assert tokens.shape[0] == 1
        generator.gen_begin(tokens)
        while True:
            token = generator.gen_single_token()
            token = token[0][0].item()
            if self.is_eos_token(token):
                break
            yield token

    def _stream(
        self,
        prompt: str,
        *,
        max_new_tokens: Optional[int] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        stop: Optional[Sequence[str]] = None,
        reset: Optional[bool] = None,
    ) -> Generator[str, None, None]:
        generator = self._generator
        config = self.config
        max_new_tokens = get(max_new_tokens, config.max_new_tokens)
        stop = get(stop, config.stop) or []
        if isinstance(stop, str):
            stop = [stop]

        tokens = self.tokenize(prompt)
        max_new_tokens = min(max_new_tokens, self.context_length - tokens.shape[1])

        stop_regex = re.compile("|".join(map(re.escape, stop)))
        count = 0
        length = len(self.detokenize(tokens[0]))
        text = ""
        for token in self.generate(
            tokens,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            last_n_tokens=last_n_tokens,
            seed=seed,
            batch_size=batch_size,
            threads=threads,
            reset=reset,
        ):
            new_text = self.detokenize(generator.sequence_actual[0])[length:]
            length += len(new_text)
            text += new_text

            # https://github.com/abetlen/llama-cpp-python/blob/1a13d76c487df1c8560132d10bda62d6e2f4fa93/llama_cpp/llama.py#L686-L706
            # Check if one of the stop sequences is part of the text.
            # Note that the stop sequence may not always be at the end of text.
            if stop:
                match = stop_regex.search(text)
                if match:
                    text = text[: match.start()]
                    break

            # Avoid sending the longest suffix of text which is also a prefix
            # of a stop sequence, as it can form a stop sequence with the text
            # generated later.
            longest = 0
            for s in stop:
                for i in range(len(s), 0, -1):
                    if text.endswith(s[:i]):
                        longest = max(i, longest)
                        break

            end = len(text) - longest
            if end > 0:
                yield text[:end]
                text = text[end:]

            count += 1
            if count >= max_new_tokens:
                break

        if text:
            yield text

    @doc
    def __call__(
        self,
        prompt: str,
        *,
        max_new_tokens: Optional[int] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        temperature: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        last_n_tokens: Optional[int] = None,
        seed: Optional[int] = None,
        batch_size: Optional[int] = None,
        threads: Optional[int] = None,
        stop: Optional[Sequence[str]] = None,
        stream: Optional[bool] = None,
        reset: Optional[bool] = None,
    ) -> Union[str, Generator[str, None, None]]:
        """Generates text from a prompt.

        Args:
            prompt: The prompt to generate text from.
            {params}

        Returns:
            The generated text.
        """
        config = self.config
        stream = get(stream, config.stream)

        text = self._stream(
            prompt,
            max_new_tokens=max_new_tokens,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            last_n_tokens=last_n_tokens,
            seed=seed,
            batch_size=batch_size,
            threads=threads,
            stop=stop,
            reset=reset,
        )
        if stream:
            return text
        return "".join(text)