Spaces:
Running
Running
File size: 8,478 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.utils import validate_repo_id, HFValidationError
from .llm import Config, LLM
def get_path_type(path: str) -> Optional[str]:
p = Path(path)
if p.is_file():
return "file"
elif p.is_dir():
return "dir"
try:
validate_repo_id(path)
return "repo"
except HFValidationError:
pass
@dataclass
class AutoConfig:
config: Config
model_type: Optional[str] = None
@classmethod
def from_pretrained(
cls,
model_path_or_repo_id: str,
local_files_only: bool = False,
revision: Optional[str] = None,
**kwargs,
) -> "AutoConfig":
path_type = get_path_type(model_path_or_repo_id)
if not path_type:
raise ValueError(f"Model path '{model_path_or_repo_id}' doesn't exist.")
config = Config()
auto_config = AutoConfig(config=config)
if path_type == "dir":
cls._update_from_dir(model_path_or_repo_id, auto_config)
elif path_type == "repo":
cls._update_from_repo(
model_path_or_repo_id,
auto_config,
local_files_only=local_files_only,
revision=revision,
)
for k, v in kwargs.items():
if not hasattr(config, k):
raise TypeError(
f"'{k}' is an invalid keyword argument for from_pretrained()"
)
setattr(config, k, v)
return auto_config
@classmethod
def _update_from_repo(
cls,
repo_id: str,
auto_config: "AutoConfig",
local_files_only: bool,
revision: Optional[str] = None,
) -> None:
path = snapshot_download(
repo_id=repo_id,
allow_patterns="config.json",
local_files_only=local_files_only,
revision=revision,
)
cls._update_from_dir(path, auto_config)
@classmethod
def _update_from_dir(cls, path: str, auto_config: "AutoConfig") -> None:
path = (Path(path) / "config.json").resolve()
if path.is_file():
cls._update_from_file(path, auto_config)
@classmethod
def _update_from_file(cls, path: str, auto_config: "AutoConfig") -> None:
with open(path) as f:
config = json.load(f)
auto_config.model_type = config.get("model_type")
params = config.get("task_specific_params", {})
params = params.get("text-generation", {})
for name in [
"top_k",
"top_p",
"temperature",
"repetition_penalty",
"last_n_tokens",
]:
value = params.get(name)
if value is not None:
setattr(auto_config.config, name, value)
class AutoModelForCausalLM:
@classmethod
def from_pretrained(
cls,
model_path_or_repo_id: str,
*,
model_type: Optional[str] = None,
model_file: Optional[str] = None,
config: Optional[AutoConfig] = None,
lib: Optional[str] = None,
local_files_only: bool = False,
revision: Optional[str] = None,
hf: bool = False,
**kwargs,
) -> LLM:
"""Loads the language model from a local file or remote repo.
Args:
model_path_or_repo_id: The path to a model file or directory or the
name of a Hugging Face Hub model repo.
model_type: The model type.
model_file: The name of the model file in repo or directory.
config: `AutoConfig` object.
lib: The path to a shared library or one of `avx2`, `avx`, `basic`.
local_files_only: Whether or not to only look at local files
(i.e., do not try to download the model).
revision: The specific model version to use. It can be a branch
name, a tag name, or a commit id.
hf: Whether to create a Hugging Face Transformers model.
Returns:
`LLM` object.
"""
if model_type is None and "gptq" in str(model_path_or_repo_id).lower():
model_type = "gptq"
if model_type == "gptq":
from . import gptq
return gptq.AutoModelForCausalLM.from_pretrained(
model_path_or_repo_id,
local_files_only=local_files_only,
revision=revision,
**kwargs,
)
config = config or AutoConfig.from_pretrained(
model_path_or_repo_id,
local_files_only=local_files_only,
revision=revision,
**kwargs,
)
model_type = model_type or config.model_type
path_type = get_path_type(model_path_or_repo_id)
model_path = None
if path_type == "file":
model_path = model_path_or_repo_id
elif path_type == "dir":
model_path = cls._find_model_path_from_dir(
model_path_or_repo_id, model_file
)
elif path_type == "repo":
model_path = cls._find_model_path_from_repo(
model_path_or_repo_id,
model_file,
local_files_only=local_files_only,
revision=revision,
)
llm = LLM(
model_path=model_path,
model_type=model_type,
config=config.config,
lib=lib,
)
if not hf:
return llm
from .transformers import CTransformersConfig, CTransformersModel
config = CTransformersConfig(name_or_path=str(model_path_or_repo_id))
return CTransformersModel(config=config, llm=llm)
@classmethod
def _find_model_path_from_repo(
cls,
repo_id: str,
filename: Optional[str],
local_files_only: bool,
revision: Optional[str] = None,
) -> str:
if not filename and not local_files_only:
filename = cls._find_model_file_from_repo(
repo_id=repo_id,
revision=revision,
)
allow_patterns = filename or ["*.bin", "*.gguf"]
path = snapshot_download(
repo_id=repo_id,
allow_patterns=allow_patterns,
local_files_only=local_files_only,
revision=revision,
)
return cls._find_model_path_from_dir(path, filename=filename)
@classmethod
def _find_model_file_from_repo(
cls,
repo_id: str,
revision: Optional[str] = None,
) -> Optional[str]:
api = HfApi()
repo_info = api.repo_info(
repo_id=repo_id,
files_metadata=True,
revision=revision,
)
files = [
(f.size, f.rfilename)
for f in repo_info.siblings
if f.rfilename.endswith(".bin") or f.rfilename.endswith(".gguf")
]
if not files:
raise ValueError(f"No model file found in repo '{repo_id}'")
return min(files)[1]
@classmethod
def _find_model_path_from_dir(
cls,
path: str,
filename: Optional[str] = None,
) -> str:
path = Path(path).resolve()
if filename:
file = (path / filename).resolve()
if not file.is_file():
raise ValueError(f"Model file '{filename}' not found in '{path}'")
return str(file)
files = [
(f.stat().st_size, f)
for f in path.iterdir()
if f.is_file() and (f.name.endswith(".bin") or f.name.endswith(".gguf"))
]
if not files:
raise ValueError(f"No model file found in directory '{path}'")
file = min(files)[1]
return str(file.resolve())
class AutoTokenizer:
@classmethod
def from_pretrained(cls, model):
from .transformers import CTransformersModel, CTransformersTokenizer
if not isinstance(model, CTransformersModel):
raise TypeError(
f"Currently `AutoTokenizer.from_pretrained` only accepts a model object. Please use:\n\n"
" model = AutoModelForCausalLM.from_pretrained(..., hf=True)\n"
" tokenizer = AutoTokenizer.from_pretrained(model)"
)
return CTransformersTokenizer(model._llm)
|