File size: 8,478 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.utils import validate_repo_id, HFValidationError

from .llm import Config, LLM


def get_path_type(path: str) -> Optional[str]:
    p = Path(path)
    if p.is_file():
        return "file"
    elif p.is_dir():
        return "dir"
    try:
        validate_repo_id(path)
        return "repo"
    except HFValidationError:
        pass


@dataclass
class AutoConfig:
    config: Config
    model_type: Optional[str] = None

    @classmethod
    def from_pretrained(
        cls,
        model_path_or_repo_id: str,
        local_files_only: bool = False,
        revision: Optional[str] = None,
        **kwargs,
    ) -> "AutoConfig":
        path_type = get_path_type(model_path_or_repo_id)
        if not path_type:
            raise ValueError(f"Model path '{model_path_or_repo_id}' doesn't exist.")

        config = Config()
        auto_config = AutoConfig(config=config)

        if path_type == "dir":
            cls._update_from_dir(model_path_or_repo_id, auto_config)
        elif path_type == "repo":
            cls._update_from_repo(
                model_path_or_repo_id,
                auto_config,
                local_files_only=local_files_only,
                revision=revision,
            )

        for k, v in kwargs.items():
            if not hasattr(config, k):
                raise TypeError(
                    f"'{k}' is an invalid keyword argument for from_pretrained()"
                )
            setattr(config, k, v)

        return auto_config

    @classmethod
    def _update_from_repo(
        cls,
        repo_id: str,
        auto_config: "AutoConfig",
        local_files_only: bool,
        revision: Optional[str] = None,
    ) -> None:
        path = snapshot_download(
            repo_id=repo_id,
            allow_patterns="config.json",
            local_files_only=local_files_only,
            revision=revision,
        )
        cls._update_from_dir(path, auto_config)

    @classmethod
    def _update_from_dir(cls, path: str, auto_config: "AutoConfig") -> None:
        path = (Path(path) / "config.json").resolve()
        if path.is_file():
            cls._update_from_file(path, auto_config)

    @classmethod
    def _update_from_file(cls, path: str, auto_config: "AutoConfig") -> None:
        with open(path) as f:
            config = json.load(f)

        auto_config.model_type = config.get("model_type")
        params = config.get("task_specific_params", {})
        params = params.get("text-generation", {})
        for name in [
            "top_k",
            "top_p",
            "temperature",
            "repetition_penalty",
            "last_n_tokens",
        ]:
            value = params.get(name)
            if value is not None:
                setattr(auto_config.config, name, value)


class AutoModelForCausalLM:
    @classmethod
    def from_pretrained(
        cls,
        model_path_or_repo_id: str,
        *,
        model_type: Optional[str] = None,
        model_file: Optional[str] = None,
        config: Optional[AutoConfig] = None,
        lib: Optional[str] = None,
        local_files_only: bool = False,
        revision: Optional[str] = None,
        hf: bool = False,
        **kwargs,
    ) -> LLM:
        """Loads the language model from a local file or remote repo.

        Args:
            model_path_or_repo_id: The path to a model file or directory or the
            name of a Hugging Face Hub model repo.
            model_type: The model type.
            model_file: The name of the model file in repo or directory.
            config: `AutoConfig` object.
            lib: The path to a shared library or one of `avx2`, `avx`, `basic`.
            local_files_only: Whether or not to only look at local files
            (i.e., do not try to download the model).
            revision: The specific model version to use. It can be a branch
            name, a tag name, or a commit id.
            hf: Whether to create a Hugging Face Transformers model.

        Returns:
            `LLM` object.
        """
        if model_type is None and "gptq" in str(model_path_or_repo_id).lower():
            model_type = "gptq"
        if model_type == "gptq":
            from . import gptq

            return gptq.AutoModelForCausalLM.from_pretrained(
                model_path_or_repo_id,
                local_files_only=local_files_only,
                revision=revision,
                **kwargs,
            )

        config = config or AutoConfig.from_pretrained(
            model_path_or_repo_id,
            local_files_only=local_files_only,
            revision=revision,
            **kwargs,
        )
        model_type = model_type or config.model_type

        path_type = get_path_type(model_path_or_repo_id)
        model_path = None
        if path_type == "file":
            model_path = model_path_or_repo_id
        elif path_type == "dir":
            model_path = cls._find_model_path_from_dir(
                model_path_or_repo_id, model_file
            )
        elif path_type == "repo":
            model_path = cls._find_model_path_from_repo(
                model_path_or_repo_id,
                model_file,
                local_files_only=local_files_only,
                revision=revision,
            )

        llm = LLM(
            model_path=model_path,
            model_type=model_type,
            config=config.config,
            lib=lib,
        )
        if not hf:
            return llm

        from .transformers import CTransformersConfig, CTransformersModel

        config = CTransformersConfig(name_or_path=str(model_path_or_repo_id))
        return CTransformersModel(config=config, llm=llm)

    @classmethod
    def _find_model_path_from_repo(
        cls,
        repo_id: str,
        filename: Optional[str],
        local_files_only: bool,
        revision: Optional[str] = None,
    ) -> str:
        if not filename and not local_files_only:
            filename = cls._find_model_file_from_repo(
                repo_id=repo_id,
                revision=revision,
            )
        allow_patterns = filename or ["*.bin", "*.gguf"]
        path = snapshot_download(
            repo_id=repo_id,
            allow_patterns=allow_patterns,
            local_files_only=local_files_only,
            revision=revision,
        )
        return cls._find_model_path_from_dir(path, filename=filename)

    @classmethod
    def _find_model_file_from_repo(
        cls,
        repo_id: str,
        revision: Optional[str] = None,
    ) -> Optional[str]:
        api = HfApi()
        repo_info = api.repo_info(
            repo_id=repo_id,
            files_metadata=True,
            revision=revision,
        )
        files = [
            (f.size, f.rfilename)
            for f in repo_info.siblings
            if f.rfilename.endswith(".bin") or f.rfilename.endswith(".gguf")
        ]
        if not files:
            raise ValueError(f"No model file found in repo '{repo_id}'")
        return min(files)[1]

    @classmethod
    def _find_model_path_from_dir(
        cls,
        path: str,
        filename: Optional[str] = None,
    ) -> str:
        path = Path(path).resolve()
        if filename:
            file = (path / filename).resolve()
            if not file.is_file():
                raise ValueError(f"Model file '{filename}' not found in '{path}'")
            return str(file)

        files = [
            (f.stat().st_size, f)
            for f in path.iterdir()
            if f.is_file() and (f.name.endswith(".bin") or f.name.endswith(".gguf"))
        ]
        if not files:
            raise ValueError(f"No model file found in directory '{path}'")
        file = min(files)[1]
        return str(file.resolve())


class AutoTokenizer:
    @classmethod
    def from_pretrained(cls, model):
        from .transformers import CTransformersModel, CTransformersTokenizer

        if not isinstance(model, CTransformersModel):
            raise TypeError(
                f"Currently `AutoTokenizer.from_pretrained` only accepts a model object. Please use:\n\n"
                "  model = AutoModelForCausalLM.from_pretrained(..., hf=True)\n"
                "  tokenizer = AutoTokenizer.from_pretrained(model)"
            )

        return CTransformersTokenizer(model._llm)