Spaces:
Running
Running
File size: 12,281 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This contrib module contains a few routines useful to do clustering variants.
"""
import numpy as np
import faiss
import time
from multiprocessing.pool import ThreadPool
try:
import scipy.sparse
except ImportError:
print("scipy not accessible, Python k-means will not work")
def print_nop(*arg, **kwargs):
pass
def two_level_clustering(xt, nc1, nc2, rebalance=True, clustering_niter=25, **args):
"""
perform 2-level clustering on a training set xt
nc1 and nc2 are the number of clusters at each level, the final number of
clusters is nc2. Additional arguments are passed to the Kmeans object.
Rebalance allocates the number of sub-clusters depending on the number of
first-level assignment.
"""
d = xt.shape[1]
verbose = args.get("verbose", False)
log = print if verbose else print_nop
log(f"2-level clustering of {xt.shape} nb 1st level clusters = {nc1} total {nc2}")
log("perform coarse training")
km = faiss.Kmeans(
d, nc1, niter=clustering_niter,
max_points_per_centroid=2000,
**args
)
km.train(xt)
iteration_stats = [km.iteration_stats]
log()
# coarse centroids
centroids1 = km.centroids
log("assigning the training set")
t0 = time.time()
_, assign1 = km.assign(xt)
bc = np.bincount(assign1, minlength=nc1)
log(f"done in {time.time() - t0:.2f} s. Sizes of clusters {min(bc)}-{max(bc)}")
o = assign1.argsort()
del km
if not rebalance:
# make sure the sub-clusters sum up to exactly nc2
cc = np.arange(nc1 + 1) * nc2 // nc1
all_nc2 = cc[1:] - cc[:-1]
else:
bc_sum = np.cumsum(bc)
all_nc2 = bc_sum * nc2 // bc_sum[-1]
all_nc2[1:] -= all_nc2[:-1]
assert sum(all_nc2) == nc2
log(f"nb 2nd-level centroids {min(all_nc2)}-{max(all_nc2)}")
# train sub-clusters
i0 = 0
c2 = []
t0 = time.time()
for c1 in range(nc1):
nc2 = int(all_nc2[c1])
log(f"[{time.time() - t0:.2f} s] training sub-cluster {c1}/{nc1} nc2={nc2}\r", end="", flush=True)
i1 = i0 + bc[c1]
subset = o[i0:i1]
assert np.all(assign1[subset] == c1)
km = faiss.Kmeans(d, nc2, **args)
xtsub = xt[subset]
km.train(xtsub)
iteration_stats.append(km.iteration_stats)
c2.append(km.centroids)
del km
i0 = i1
log(f"done in {time.time() - t0:.2f} s")
return np.vstack(c2), iteration_stats
def train_ivf_index_with_2level(index, xt, **args):
"""
Applies 2-level clustering to an index_ivf embedded in an index.
"""
# handle PreTransforms
index = faiss.downcast_index(index)
if isinstance(index, faiss.IndexPreTransform):
for i in range(index.chain.size()):
vt = index.chain.at(i)
vt.train(xt)
xt = vt.apply(xt)
train_ivf_index_with_2level(index.index, xt, **args)
index.is_trained = True
return
assert isinstance(index, faiss.IndexIVF)
assert index.metric_type == faiss.METRIC_L2
# now do 2-level clustering
nc1 = int(np.sqrt(index.nlist))
print("REBALANCE=", args)
centroids, _ = two_level_clustering(xt, nc1, index.nlist, **args)
index.quantizer.train(centroids)
index.quantizer.add(centroids)
# finish training
index.train(xt)
###############################################################################
# K-means implementation in Python
#
# It relies on DatasetAssign, an abstraction of the training vectors that offers
# the minimal set of operations to perform k-means clustering.
###############################################################################
class DatasetAssign:
"""Wrapper for a matrix that offers a function to assign the vectors
to centroids. All other implementations offer the same interface"""
def __init__(self, x):
self.x = np.ascontiguousarray(x, dtype='float32')
def count(self):
return self.x.shape[0]
def dim(self):
return self.x.shape[1]
def get_subset(self, indices):
return self.x[indices]
def perform_search(self, centroids):
return faiss.knn(self.x, centroids, 1)
def assign_to(self, centroids, weights=None):
D, I = self.perform_search(centroids)
I = I.ravel()
D = D.ravel()
n = len(self.x)
if weights is None:
weights = np.ones(n, dtype='float32')
nc = len(centroids)
m = scipy.sparse.csc_matrix(
(weights, I, np.arange(n + 1)),
shape=(nc, n))
sum_per_centroid = m * self.x
return I, D, sum_per_centroid
class DatasetAssignGPU(DatasetAssign):
""" GPU version of the previous """
def __init__(self, x, gpu_id, verbose=False):
DatasetAssign.__init__(self, x)
index = faiss.IndexFlatL2(x.shape[1])
if gpu_id >= 0:
self.index = faiss.index_cpu_to_gpu(
faiss.StandardGpuResources(),
gpu_id, index)
else:
# -1 -> assign to all GPUs
self.index = faiss.index_cpu_to_all_gpus(index)
def perform_search(self, centroids):
self.index.reset()
self.index.add(centroids)
return self.index.search(self.x, 1)
def sparse_assign_to_dense(xq, xb, xq_norms=None, xb_norms=None):
""" assignment function for xq is sparse, xb is dense
uses a matrix multiplication. The squared norms can be provided if available.
"""
nq = xq.shape[0]
nb = xb.shape[0]
if xb_norms is None:
xb_norms = (xb ** 2).sum(1)
if xq_norms is None:
xq_norms = np.array(xq.power(2).sum(1))
d2 = xb_norms - 2 * xq @ xb.T
I = d2.argmin(axis=1)
D = d2.ravel()[I + np.arange(nq) * nb] + xq_norms.ravel()
return D, I
def sparse_assign_to_dense_blocks(
xq, xb, xq_norms=None, xb_norms=None, qbs=16384, bbs=16384, nt=None):
"""
decomposes the sparse_assign_to_dense function into blocks to avoid a
possible memory blow up. Can be run in multithreaded mode, because scipy's
sparse-dense matrix multiplication is single-threaded.
"""
nq = xq.shape[0]
nb = xb.shape[0]
D = np.empty(nq, dtype="float32")
D.fill(np.inf)
I = -np.ones(nq, dtype=int)
if xb_norms is None:
xb_norms = (xb ** 2).sum(1)
def handle_query_block(i):
xq_block = xq[i : i + qbs]
Iblock = I[i : i + qbs]
Dblock = D[i : i + qbs]
if xq_norms is None:
xq_norms_block = np.array(xq_block.power(2).sum(1))
else:
xq_norms_block = xq_norms[i : i + qbs]
for j in range(0, nb, bbs):
Di, Ii = sparse_assign_to_dense(
xq_block,
xb[j : j + bbs],
xq_norms=xq_norms_block,
xb_norms=xb_norms[j : j + bbs],
)
if j == 0:
Iblock[:] = Ii
Dblock[:] = Di
else:
mask = Di < Dblock
Iblock[mask] = Ii[mask] + j
Dblock[mask] = Di[mask]
if nt == 0 or nt == 1 or nq <= qbs:
list(map(handle_query_block, range(0, nq, qbs)))
else:
pool = ThreadPool(nt)
pool.map(handle_query_block, range(0, nq, qbs))
return D, I
class DatasetAssignSparse(DatasetAssign):
"""Wrapper for a matrix that offers a function to assign the vectors
to centroids. All other implementations offer the same interface"""
def __init__(self, x):
assert x.__class__ == scipy.sparse.csr_matrix
self.x = x
self.squared_norms = np.array(x.power(2).sum(1))
def get_subset(self, indices):
return np.array(self.x[indices].todense())
def perform_search(self, centroids):
return sparse_assign_to_dense_blocks(
self.x, centroids, xq_norms=self.squared_norms)
def assign_to(self, centroids, weights=None):
D, I = self.perform_search(centroids)
I = I.ravel()
D = D.ravel()
n = self.x.shape[0]
if weights is None:
weights = np.ones(n, dtype='float32')
nc = len(centroids)
m = scipy.sparse.csc_matrix(
(weights, I, np.arange(n + 1)),
shape=(nc, n))
sum_per_centroid = np.array((m * self.x).todense())
return I, D, sum_per_centroid
def imbalance_factor(k, assign):
assign = np.ascontiguousarray(assign, dtype='int64')
return faiss.imbalance_factor(len(assign), k, faiss.swig_ptr(assign))
def reassign_centroids(hassign, centroids, rs=None):
""" reassign centroids when some of them collapse """
if rs is None:
rs = np.random
k, d = centroids.shape
nsplit = 0
empty_cents = np.where(hassign == 0)[0]
if empty_cents.size == 0:
return 0
fac = np.ones(d)
fac[::2] += 1 / 1024.
fac[1::2] -= 1 / 1024.
# this is a single pass unless there are more than k/2
# empty centroids
while empty_cents.size > 0:
# choose which centroids to split
probas = hassign.astype('float') - 1
probas[probas < 0] = 0
probas /= probas.sum()
nnz = (probas > 0).sum()
nreplace = min(nnz, empty_cents.size)
cjs = rs.choice(k, size=nreplace, p=probas)
for ci, cj in zip(empty_cents[:nreplace], cjs):
c = centroids[cj]
centroids[ci] = c * fac
centroids[cj] = c / fac
hassign[ci] = hassign[cj] // 2
hassign[cj] -= hassign[ci]
nsplit += 1
empty_cents = empty_cents[nreplace:]
return nsplit
def kmeans(k, data, niter=25, seed=1234, checkpoint=None, verbose=True,
return_stats=False):
"""Pure python kmeans implementation. Follows the Faiss C++ version
quite closely, but takes a DatasetAssign instead of a training data
matrix. Also redo is not implemented. """
n, d = data.count(), data.dim()
log = print if verbose else print_nop
log(("Clustering %d points in %dD to %d clusters, " +
"%d iterations seed %d") % (n, d, k, niter, seed))
rs = np.random.RandomState(seed)
print("preproc...")
t0 = time.time()
# initialization
perm = rs.choice(n, size=k, replace=False)
centroids = data.get_subset(perm)
iteration_stats = []
log(" done")
t_search_tot = 0
obj = []
for i in range(niter):
t0s = time.time()
log('assigning', end='\r', flush=True)
assign, D, sums = data.assign_to(centroids)
log('compute centroids', end='\r', flush=True)
t_search_tot += time.time() - t0s;
err = D.sum()
obj.append(err)
hassign = np.bincount(assign, minlength=k)
fac = hassign.reshape(-1, 1).astype('float32')
fac[fac == 0] = 1 # quiet warning
centroids = sums / fac
nsplit = reassign_centroids(hassign, centroids, rs)
s = {
"obj": err,
"time": (time.time() - t0),
"time_search": t_search_tot,
"imbalance_factor": imbalance_factor (k, assign),
"nsplit": nsplit
}
log((" Iteration %d (%.2f s, search %.2f s): "
"objective=%g imbalance=%.3f nsplit=%d") % (
i, s["time"], s["time_search"],
err, s["imbalance_factor"],
nsplit)
)
iteration_stats.append(s)
if checkpoint is not None:
log('storing centroids in', checkpoint)
np.save(checkpoint, centroids)
if return_stats:
return centroids, iteration_stats
else:
return centroids
|