Spaces:
Running
Running
File size: 12,472 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import numpy as np
import faiss
from .vecs_io import fvecs_read, ivecs_read, bvecs_mmap, fvecs_mmap
from .exhaustive_search import knn
class Dataset:
""" Generic abstract class for a test dataset """
def __init__(self):
""" the constructor should set the following fields: """
self.d = -1
self.metric = 'L2' # or IP
self.nq = -1
self.nb = -1
self.nt = -1
def get_queries(self):
""" return the queries as a (nq, d) array """
raise NotImplementedError()
def get_train(self, maxtrain=None):
""" return the queries as a (nt, d) array """
raise NotImplementedError()
def get_database(self):
""" return the queries as a (nb, d) array """
raise NotImplementedError()
def database_iterator(self, bs=128, split=(1, 0)):
"""returns an iterator on database vectors.
bs is the number of vectors per batch
split = (nsplit, rank) means the dataset is split in nsplit
shards and we want shard number rank
The default implementation just iterates over the full matrix
returned by get_dataset.
"""
xb = self.get_database()
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield xb[j0: min(j0 + bs, i1)]
def get_groundtruth(self, k=None):
""" return the ground truth for k-nearest neighbor search """
raise NotImplementedError()
def get_groundtruth_range(self, thresh=None):
""" return the ground truth for range search """
raise NotImplementedError()
def __str__(self):
return (f"dataset in dimension {self.d}, with metric {self.metric}, "
f"size: Q {self.nq} B {self.nb} T {self.nt}")
def check_sizes(self):
""" runs the previous and checks the sizes of the matrices """
assert self.get_queries().shape == (self.nq, self.d)
if self.nt > 0:
xt = self.get_train(maxtrain=123)
assert xt.shape == (123, self.d), "shape=%s" % (xt.shape, )
assert self.get_database().shape == (self.nb, self.d)
assert self.get_groundtruth(k=13).shape == (self.nq, 13)
class SyntheticDataset(Dataset):
"""A dataset that is not completely random but still challenging to
index
"""
def __init__(self, d, nt, nb, nq, metric='L2', seed=1338):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = d, nt, nb, nq
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(seed)
x = rs.normal(size=(n, d1))
x = np.dot(x, rs.rand(d1, d))
# now we have a d1-dim ellipsoid in d-dimensional space
# higher factor (>4) -> higher frequency -> less linear
x = x * (rs.rand(d) * 4 + 0.1)
x = np.sin(x)
x = x.astype('float32')
self.metric = metric
self.xt = x[:nt]
self.xb = x[nt:nt + nb]
self.xq = x[nt + nb:]
def get_queries(self):
return self.xq
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return self.xt[:maxtrain]
def get_database(self):
return self.xb
def get_groundtruth(self, k=100):
return knn(
self.xq, self.xb, k,
faiss.METRIC_L2 if self.metric == 'L2' else faiss.METRIC_INNER_PRODUCT
)[1]
############################################################################
# The following datasets are a few standard open-source datasets
# they should be stored in a directory, and we start by guessing where
# that directory is
############################################################################
for dataset_basedir in (
'/datasets01/simsearch/041218/',
'/mnt/vol/gfsai-flash3-east/ai-group/datasets/simsearch/'):
if os.path.exists(dataset_basedir):
break
else:
# users can link their data directory to `./data`
dataset_basedir = 'data/'
class DatasetSIFT1M(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_SIFT1M)
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 128, 100000, 1000000, 10000
self.basedir = dataset_basedir + 'sift1M/'
def get_queries(self):
return fvecs_read(self.basedir + "sift_query.fvecs")
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return fvecs_read(self.basedir + "sift_learn.fvecs")[:maxtrain]
def get_database(self):
return fvecs_read(self.basedir + "sift_base.fvecs")
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + "sift_groundtruth.ivecs")
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def sanitize(x):
return np.ascontiguousarray(x, dtype='float32')
class DatasetBigANN(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_SIFT1B)
"""
def __init__(self, nb_M=1000):
Dataset.__init__(self)
assert nb_M in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000)
self.nb_M = nb_M
nb = nb_M * 10**6
self.d, self.nt, self.nb, self.nq = 128, 10**8, nb, 10000
self.basedir = dataset_basedir + 'bigann/'
def get_queries(self):
return sanitize(bvecs_mmap(self.basedir + 'bigann_query.bvecs')[:])
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return sanitize(bvecs_mmap(self.basedir + 'bigann_learn.bvecs')[:maxtrain])
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + 'gnd/idx_%dM.ivecs' % self.nb_M)
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def get_database(self):
assert self.nb_M < 100, "dataset too large, use iterator"
return sanitize(bvecs_mmap(self.basedir + 'bigann_base.bvecs')[:self.nb])
def database_iterator(self, bs=128, split=(1, 0)):
xb = bvecs_mmap(self.basedir + 'bigann_base.bvecs')
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield sanitize(xb[j0: min(j0 + bs, i1)])
class DatasetDeep1B(Dataset):
"""
See
https://github.com/facebookresearch/faiss/tree/main/benchs#getting-deep1b
on how to get the data
"""
def __init__(self, nb=10**9):
Dataset.__init__(self)
nb_to_name = {
10**5: '100k',
10**6: '1M',
10**7: '10M',
10**8: '100M',
10**9: '1B'
}
assert nb in nb_to_name
self.d, self.nt, self.nb, self.nq = 96, 358480000, nb, 10000
self.basedir = dataset_basedir + 'deep1b/'
self.gt_fname = "%sdeep%s_groundtruth.ivecs" % (
self.basedir, nb_to_name[self.nb])
def get_queries(self):
return sanitize(fvecs_read(self.basedir + "deep1B_queries.fvecs"))
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return sanitize(fvecs_mmap(self.basedir + "learn.fvecs")[:maxtrain])
def get_groundtruth(self, k=None):
gt = ivecs_read(self.gt_fname)
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def get_database(self):
assert self.nb <= 10**8, "dataset too large, use iterator"
return sanitize(fvecs_mmap(self.basedir + "base.fvecs")[:self.nb])
def database_iterator(self, bs=128, split=(1, 0)):
xb = fvecs_mmap(self.basedir + "base.fvecs")
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield sanitize(xb[j0: min(j0 + bs, i1)])
class DatasetGlove(Dataset):
"""
Data from http://ann-benchmarks.com/glove-100-angular.hdf5
"""
def __init__(self, loc=None, download=False):
import h5py
assert not download, "not implemented"
if not loc:
loc = dataset_basedir + 'glove/glove-100-angular.hdf5'
self.glove_h5py = h5py.File(loc, 'r')
# IP and L2 are equivalent in this case, but it is traditionally seen as an IP dataset
self.metric = 'IP'
self.d, self.nt = 100, 0
self.nb = self.glove_h5py['train'].shape[0]
self.nq = self.glove_h5py['test'].shape[0]
def get_queries(self):
xq = np.array(self.glove_h5py['test'])
faiss.normalize_L2(xq)
return xq
def get_database(self):
xb = np.array(self.glove_h5py['train'])
faiss.normalize_L2(xb)
return xb
def get_groundtruth(self, k=None):
gt = self.glove_h5py['neighbors']
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
class DatasetMusic100(Dataset):
"""
get dataset from
https://github.com/stanis-morozov/ip-nsw#dataset
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 100, 0, 10**6, 10000
self.metric = 'IP'
self.basedir = dataset_basedir + 'music-100/'
def get_queries(self):
xq = np.fromfile(self.basedir + 'query_music100.bin', dtype='float32')
xq = xq.reshape(-1, 100)
return xq
def get_database(self):
xb = np.fromfile(self.basedir + 'database_music100.bin', dtype='float32')
xb = xb.reshape(-1, 100)
return xb
def get_groundtruth(self, k=None):
gt = np.load(self.basedir + 'gt.npy')
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
class DatasetGIST1M(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_SIFT1M)
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 960, 100000, 1000000, 10000
self.basedir = dataset_basedir + 'gist1M/'
def get_queries(self):
return fvecs_read(self.basedir + "gist_query.fvecs")
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return fvecs_read(self.basedir + "gist_learn.fvecs")[:maxtrain]
def get_database(self):
return fvecs_read(self.basedir + "gist_base.fvecs")
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + "gist_groundtruth.ivecs")
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def dataset_from_name(dataset='deep1M', download=False):
""" converts a string describing a dataset to a Dataset object
Supports sift1M, bigann1M..bigann1B, deep1M..deep1B, music-100 and glove
"""
if dataset == 'sift1M':
return DatasetSIFT1M()
elif dataset == 'gist1M':
return DatasetGIST1M()
elif dataset.startswith('bigann'):
dbsize = 1000 if dataset == "bigann1B" else int(dataset[6:-1])
return DatasetBigANN(nb_M=dbsize)
elif dataset.startswith("deep"):
szsuf = dataset[4:]
if szsuf[-1] == 'M':
dbsize = 10 ** 6 * int(szsuf[:-1])
elif szsuf == '1B':
dbsize = 10 ** 9
elif szsuf[-1] == 'k':
dbsize = 1000 * int(szsuf[:-1])
else:
assert False, "did not recognize suffix " + szsuf
return DatasetDeep1B(nb=dbsize)
elif dataset == "music-100":
return DatasetMusic100()
elif dataset == "glove":
return DatasetGlove(download=download)
else:
raise RuntimeError("unknown dataset " + dataset)
|