File size: 15,485 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import unittest
import time
import faiss

from multiprocessing.pool import ThreadPool

###############################################################
# Simple functions to evaluate knn results

def knn_intersection_measure(I1, I2):
    """ computes the intersection measure of two result tables

    """
    nq, rank = I1.shape
    assert I2.shape == (nq, rank)
    ninter = sum(
        np.intersect1d(I1[i], I2[i]).size
        for i in range(nq)
    )
    return ninter / I1.size

###############################################################
# Range search results can be compared with Precision-Recall

def filter_range_results(lims, D, I, thresh):
    """ select a set of results """
    nq = lims.size - 1
    mask = D < thresh
    new_lims = np.zeros_like(lims)
    for i in range(nq):
        new_lims[i + 1] = new_lims[i] + mask[lims[i] : lims[i + 1]].sum()
    return new_lims, D[mask], I[mask]


def range_PR(lims_ref, Iref, lims_new, Inew, mode="overall"):
    """compute the precision and recall of range search results. The

    function does not take the distances into account. """

    def ref_result_for(i):
        return Iref[lims_ref[i]:lims_ref[i + 1]]

    def new_result_for(i):
        return Inew[lims_new[i]:lims_new[i + 1]]

    nq = lims_ref.size - 1
    assert lims_new.size - 1 == nq

    ninter = np.zeros(nq, dtype="int64")

    def compute_PR_for(q):

        # ground truth results for this query
        gt_ids = ref_result_for(q)

        # results for this query
        new_ids = new_result_for(q)

        # there are no set functions in numpy so let's do this
        inter = np.intersect1d(gt_ids, new_ids)

        ninter[q] = len(inter)

    # run in a thread pool, which helps in spite of the GIL
    pool = ThreadPool(20)
    pool.map(compute_PR_for, range(nq))

    return counts_to_PR(
        lims_ref[1:] - lims_ref[:-1],
        lims_new[1:] - lims_new[:-1],
        ninter,
        mode=mode
    )


def counts_to_PR(ngt, nres, ninter, mode="overall"):
    """ computes a  precision-recall for a ser of queries.

    ngt = nb of GT results per query

    nres = nb of found results per query

    ninter = nb of correct results per query (smaller than nres of course)

    """

    if mode == "overall":
        ngt, nres, ninter = ngt.sum(), nres.sum(), ninter.sum()

        if nres > 0:
            precision = ninter / nres
        else:
            precision = 1.0

        if ngt > 0:
            recall = ninter / ngt
        elif nres == 0:
            recall = 1.0
        else:
            recall = 0.0

        return precision, recall

    elif mode == "average":
        # average precision and recall over queries

        mask = ngt == 0
        ngt[mask] = 1

        recalls = ninter / ngt
        recalls[mask] = (nres[mask] == 0).astype(float)

        # avoid division by 0
        mask = nres == 0
        assert np.all(ninter[mask] == 0)
        ninter[mask] = 1
        nres[mask] = 1

        precisions = ninter / nres

        return precisions.mean(), recalls.mean()

    else:
        raise AssertionError()

def sort_range_res_2(lims, D, I):
    """ sort 2 arrays using the first as key """
    I2 = np.empty_like(I)
    D2 = np.empty_like(D)
    nq = len(lims) - 1
    for i in range(nq):
        l0, l1 = lims[i], lims[i + 1]
        ii = I[l0:l1]
        di = D[l0:l1]
        o = di.argsort()
        I2[l0:l1] = ii[o]
        D2[l0:l1] = di[o]
    return I2, D2


def sort_range_res_1(lims, I):
    I2 = np.empty_like(I)
    nq = len(lims) - 1
    for i in range(nq):
        l0, l1 = lims[i], lims[i + 1]
        I2[l0:l1] = I[l0:l1]
        I2[l0:l1].sort()
    return I2


def range_PR_multiple_thresholds(

            lims_ref, Iref,

            lims_new, Dnew, Inew,

            thresholds,

            mode="overall", do_sort="ref,new"

    ):
    """ compute precision-recall values for range search results

    for several thresholds on the "new" results.

    This is to plot PR curves

    """
    # ref should be sorted by ids
    if "ref" in do_sort:
        Iref = sort_range_res_1(lims_ref, Iref)

    # new should be sorted by distances
    if "new" in do_sort:
        Inew, Dnew = sort_range_res_2(lims_new, Dnew, Inew)

    def ref_result_for(i):
        return Iref[lims_ref[i]:lims_ref[i + 1]]

    def new_result_for(i):
        l0, l1 = lims_new[i], lims_new[i + 1]
        return Inew[l0:l1], Dnew[l0:l1]

    nq = lims_ref.size - 1
    assert lims_new.size - 1 == nq

    nt = len(thresholds)
    counts = np.zeros((nq, nt, 3), dtype="int64")

    def compute_PR_for(q):
        gt_ids = ref_result_for(q)
        res_ids, res_dis = new_result_for(q)

        counts[q, :, 0] = len(gt_ids)

        if res_dis.size == 0:
            # the rest remains at 0
            return

        # which offsets we are interested in
        nres= np.searchsorted(res_dis, thresholds)
        counts[q, :, 1] = nres

        if gt_ids.size == 0:
            return

        # find number of TPs at each stage in the result list
        ii = np.searchsorted(gt_ids, res_ids)
        ii[ii == len(gt_ids)] = -1
        n_ok = np.cumsum(gt_ids[ii] == res_ids)

        # focus on threshold points
        n_ok = np.hstack(([0], n_ok))
        counts[q, :, 2] = n_ok[nres]

    pool = ThreadPool(20)
    pool.map(compute_PR_for, range(nq))
    # print(counts.transpose(2, 1, 0))

    precisions = np.zeros(nt)
    recalls = np.zeros(nt)
    for t in range(nt):
        p, r = counts_to_PR(
                counts[:, t, 0], counts[:, t, 1], counts[:, t, 2],
                mode=mode
        )
        precisions[t] = p
        recalls[t] = r

    return precisions, recalls


###############################################################
# Functions that compare search results with a reference result.
# They are intended for use in tests

def _cluster_tables_with_tolerance(tab1, tab2, thr):
    """ for two tables, cluster them by merging values closer than thr.

    Returns the cluster ids for each table element """
    tab = np.hstack([tab1, tab2])
    tab.sort()
    n = len(tab)
    diffs = np.ones(n)
    diffs[1:] = tab[1:] - tab[:-1]
    unique_vals = tab[diffs > thr]
    idx1 = np.searchsorted(unique_vals, tab1, side='right') - 1
    idx2 = np.searchsorted(unique_vals, tab2, side='right') - 1
    return idx1, idx2


def check_ref_knn_with_draws(Dref, Iref, Dnew, Inew, rtol=1e-5):
    """ test that knn search results are identical, with possible ties.

    Raise if not. """
    np.testing.assert_allclose(Dref, Dnew, rtol=rtol)
    # here we have to be careful because of draws
    testcase = unittest.TestCase()   # because it makes nice error messages
    for i in range(len(Iref)):
        if np.all(Iref[i] == Inew[i]): # easy case
            continue

        # otherwise collect elements per distance
        r = rtol * Dref[i].max()

        DrefC, DnewC = _cluster_tables_with_tolerance(Dref[i], Dnew[i], r)

        for dis in np.unique(DrefC):
            if dis == DrefC[-1]:
                continue
            mask = DrefC == dis
            testcase.assertEqual(set(Iref[i, mask]), set(Inew[i, mask]))


def check_ref_range_results(Lref, Dref, Iref,

                            Lnew, Dnew, Inew):
    """ compare range search results wrt. a reference result,

    throw if it fails """
    np.testing.assert_array_equal(Lref, Lnew)
    nq = len(Lref) - 1
    for i in range(nq):
        l0, l1 = Lref[i], Lref[i + 1]
        Ii_ref = Iref[l0:l1]
        Ii_new = Inew[l0:l1]
        Di_ref = Dref[l0:l1]
        Di_new = Dnew[l0:l1]
        if np.all(Ii_ref == Ii_new): # easy
            pass
        else:
            def sort_by_ids(I, D):
                o = I.argsort()
                return I[o], D[o]
            # sort both
            (Ii_ref, Di_ref) = sort_by_ids(Ii_ref, Di_ref)
            (Ii_new, Di_new) = sort_by_ids(Ii_new, Di_new)
            np.testing.assert_array_equal(Ii_ref, Ii_new)
        np.testing.assert_array_almost_equal(Di_ref, Di_new, decimal=5)


###############################################################
# OperatingPoints functions
# this is the Python version of the AutoTune object in C++

class OperatingPoints:
    """

    Manages a set of search parameters with associated performance and time.

    Keeps the Pareto optimal points.

    """

    def __init__(self):
        # list of (key, perf, t)
        self.operating_points = [
            #  (self.do_nothing_key(), 0.0, 0.0)
        ]
        self.suboptimal_points = []

    def compare_keys(self, k1, k2):
        """ return -1 if k1 > k2, 1 if k2 > k1, 0 otherwise """
        raise NotImplemented

    def do_nothing_key(self):
        """ parameters to say we do noting, takes 0 time and has 0 performance"""
        raise NotImplemented

    def is_pareto_optimal(self, perf_new, t_new):
        for _, perf, t in self.operating_points:
            if perf >= perf_new and t <= t_new:
                return False
        return True

    def predict_bounds(self, key):
        """ predicts the bound on time and performance """
        min_time = 0.0
        max_perf = 1.0
        for key2, perf, t in self.operating_points + self.suboptimal_points:
            cmp = self.compare_keys(key, key2)
            if cmp > 0: # key2 > key
                if t > min_time:
                    min_time = t
            if cmp < 0: # key2 < key
                if perf < max_perf:
                    max_perf = perf
        return max_perf, min_time

    def should_run_experiment(self, key):
        (max_perf, min_time) = self.predict_bounds(key)
        return self.is_pareto_optimal(max_perf, min_time)

    def add_operating_point(self, key, perf, t):
        if self.is_pareto_optimal(perf, t):
            i = 0
            # maybe it shadows some other operating point completely?
            while i < len(self.operating_points):
                op_Ls, perf2, t2 = self.operating_points[i]
                if perf >= perf2 and t < t2:
                    self.suboptimal_points.append(
                        self.operating_points.pop(i))
                else:
                    i += 1
            self.operating_points.append((key, perf, t))
            return True
        else:
            self.suboptimal_points.append((key, perf, t))
            return False


class OperatingPointsWithRanges(OperatingPoints):
    """

    Set of parameters that are each picked from a discrete range of values.

    An increase of each parameter is assumed to make the operation slower

    and more accurate.

    A key = int array of indices in the ordered set of parameters.

    """

    def __init__(self):
        OperatingPoints.__init__(self)
        # list of (name, values)
        self.ranges = []

    def add_range(self, name, values):
        self.ranges.append((name, values))

    def compare_keys(self, k1, k2):
        if np.all(k1 >= k2):
            return 1
        if np.all(k2 >= k1):
            return -1
        return 0

    def do_nothing_key(self):
        return np.zeros(len(self.ranges), dtype=int)

    def num_experiments(self):
        return int(np.prod([len(values) for name, values in self.ranges]))

    def sample_experiments(self, n_autotune, rs=np.random):
        """ sample a set of experiments of max size n_autotune

        (run all experiments in random order if n_autotune is 0)

        """
        assert n_autotune == 0 or n_autotune >= 2
        totex = self.num_experiments()
        rs = np.random.RandomState(123)
        if n_autotune == 0 or totex < n_autotune:
            experiments = rs.permutation(totex - 2)
        else:
            experiments = rs.choice(
                totex - 2, size=n_autotune - 2, replace=False)

        experiments = [0, totex - 1] + [int(cno) + 1 for cno in experiments]
        return experiments

    def cno_to_key(self, cno):
        """Convert a sequential experiment number to a key"""
        k = np.zeros(len(self.ranges), dtype=int)
        for i, (name, values) in enumerate(self.ranges):
            k[i] = cno % len(values)
            cno //= len(values)
        assert cno == 0
        return k

    def get_parameters(self, k):
        """Convert a key to a dictionary with parameter values"""
        return {
            name: values[k[i]]
            for i, (name, values) in enumerate(self.ranges)
        }

    def restrict_range(self, name, max_val):
        """ remove too large values from a range"""
        for name2, values in self.ranges:
            if name == name2:
                val2 = [v for v in values if v < max_val]
                values[:] = val2
                return
        raise RuntimeError(f"parameter {name} not found")


###############################################################
# Timer object

class TimerIter:
    def __init__(self, timer):
        self.ts = []
        self.runs = timer.runs
        self.timer = timer
        if timer.nt >= 0:
            faiss.omp_set_num_threads(timer.nt)

    def __next__(self):
        timer = self.timer
        self.runs -= 1
        self.ts.append(time.time())
        total_time = self.ts[-1] - self.ts[0] if len(self.ts) >= 2 else 0
        if self.runs == -1 or total_time > timer.max_secs:
            if timer.nt >= 0:
                faiss.omp_set_num_threads(timer.remember_nt)
            ts = np.array(self.ts)
            times = ts[1:] - ts[:-1]
            if len(times) == timer.runs:
                timer.times = times[timer.warmup :]
            else:
                # if timeout, we use all the runs
                timer.times = times[:]
            raise StopIteration

class RepeatTimer:
    """

    This is yet another timer object. It is adapted to Faiss by

    taking a number of openmp threads to set on input. It should be called

    in an explicit loop as:



    timer = RepeatTimer(warmup=1, nt=1, runs=6)



    for _ in timer:

        # perform operation



    print(f"time={timer.get_ms():.1f} ± {timer.get_ms_std():.1f} ms")



    the same timer can be re-used. In that case it is reset each time it

    enters a loop. It focuses on ms-scale times because for second scale

    it's usually less relevant to repeat the operation.

    """
    def __init__(self, warmup=0, nt=-1, runs=1, max_secs=np.inf):
        assert warmup < runs
        self.warmup = warmup
        self.nt = nt
        self.runs = runs
        self.max_secs = max_secs
        self.remember_nt = faiss.omp_get_max_threads()

    def __iter__(self):
        return TimerIter(self)

    def ms(self):
        return np.mean(self.times) * 1000

    def ms_std(self):
        return np.std(self.times) * 1000 if len(self.times) > 1 else 0.0

    def nruns(self):
        """ effective number of runs (may be lower than runs - warmup due to timeout)"""
        return len(self.times)