Spaces:
Running
Running
File size: 12,605 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import faiss
import time
import numpy as np
import logging
LOG = logging.getLogger(__name__)
def knn_ground_truth(xq, db_iterator, k, metric_type=faiss.METRIC_L2):
"""Computes the exact KNN search results for a dataset that possibly
does not fit in RAM but for which we have an iterator that
returns it block by block.
"""
LOG.info("knn_ground_truth queries size %s k=%d" % (xq.shape, k))
t0 = time.time()
nq, d = xq.shape
keep_max = faiss.is_similarity_metric(metric_type)
rh = faiss.ResultHeap(nq, k, keep_max=keep_max)
index = faiss.IndexFlat(d, metric_type)
if faiss.get_num_gpus():
LOG.info('running on %d GPUs' % faiss.get_num_gpus())
index = faiss.index_cpu_to_all_gpus(index)
# compute ground-truth by blocks, and add to heaps
i0 = 0
for xbi in db_iterator:
ni = xbi.shape[0]
index.add(xbi)
D, I = index.search(xq, k)
I += i0
rh.add_result(D, I)
index.reset()
i0 += ni
LOG.info("%d db elements, %.3f s" % (i0, time.time() - t0))
rh.finalize()
LOG.info("GT time: %.3f s (%d vectors)" % (time.time() - t0, i0))
return rh.D, rh.I
# knn function used to be here
knn = faiss.knn
def range_search_gpu(xq, r2, index_gpu, index_cpu, gpu_k=1024):
"""GPU does not support range search, so we emulate it with
knn search + fallback to CPU index.
The index_cpu can either be:
- a CPU index that supports range search
- a numpy table, that will be used to construct a Flat index if needed.
- None. In that case, at most gpu_k results will be returned
"""
nq, d = xq.shape
is_binary_index = isinstance(index_gpu, faiss.IndexBinary)
keep_max = faiss.is_similarity_metric(index_gpu.metric_type)
r2 = int(r2) if is_binary_index else float(r2)
k = min(index_gpu.ntotal, gpu_k)
LOG.debug(
f"GPU search {nq} queries with {k=:} {is_binary_index=:} {keep_max=:}")
t0 = time.time()
D, I = index_gpu.search(xq, k)
t1 = time.time() - t0
if is_binary_index:
assert d * 8 < 32768 # let's compact the distance matrix
D = D.astype('int16')
t2 = 0
lim_remain = None
if index_cpu is not None:
if not keep_max:
mask = D[:, k - 1] < r2
else:
mask = D[:, k - 1] > r2
if mask.sum() > 0:
LOG.debug("CPU search remain %d" % mask.sum())
t0 = time.time()
if isinstance(index_cpu, np.ndarray):
# then it in fact an array that we have to make flat
xb = index_cpu
if is_binary_index:
index_cpu = faiss.IndexBinaryFlat(d * 8)
else:
index_cpu = faiss.IndexFlat(d, index_gpu.metric_type)
index_cpu.add(xb)
lim_remain, D_remain, I_remain = index_cpu.range_search(xq[mask], r2)
if is_binary_index:
D_remain = D_remain.astype('int16')
t2 = time.time() - t0
LOG.debug("combine")
t0 = time.time()
CombinerRangeKNN = (
faiss.CombinerRangeKNNint16 if is_binary_index else
faiss.CombinerRangeKNNfloat
)
combiner = CombinerRangeKNN(nq, k, r2, keep_max)
if True:
sp = faiss.swig_ptr
combiner.I = sp(I)
combiner.D = sp(D)
# combiner.set_knn_result(sp(I), sp(D))
if lim_remain is not None:
combiner.mask = sp(mask)
combiner.D_remain = sp(D_remain)
combiner.lim_remain = sp(lim_remain.view("int64"))
combiner.I_remain = sp(I_remain)
# combiner.set_range_result(sp(mask), sp(lim_remain.view("int64")), sp(D_remain), sp(I_remain))
L_res = np.empty(nq + 1, dtype='int64')
combiner.compute_sizes(sp(L_res))
nres = L_res[-1]
D_res = np.empty(nres, dtype=D.dtype)
I_res = np.empty(nres, dtype='int64')
combiner.write_result(sp(D_res), sp(I_res))
else:
D_res, I_res = [], []
nr = 0
for i in range(nq):
if not mask[i]:
if index_gpu.metric_type == faiss.METRIC_L2:
nv = (D[i, :] < r2).sum()
else:
nv = (D[i, :] > r2).sum()
D_res.append(D[i, :nv])
I_res.append(I[i, :nv])
else:
l0, l1 = lim_remain[nr], lim_remain[nr + 1]
D_res.append(D_remain[l0:l1])
I_res.append(I_remain[l0:l1])
nr += 1
L_res = np.cumsum([0] + [len(di) for di in D_res])
D_res = np.hstack(D_res)
I_res = np.hstack(I_res)
t3 = time.time() - t0
LOG.debug(f"times {t1:.3f}s {t2:.3f}s {t3:.3f}s")
return L_res, D_res, I_res
def range_ground_truth(xq, db_iterator, threshold, metric_type=faiss.METRIC_L2,
shard=False, ngpu=-1):
"""Computes the range-search search results for a dataset that possibly
does not fit in RAM but for which we have an iterator that
returns it block by block.
"""
nq, d = xq.shape
t0 = time.time()
xq = np.ascontiguousarray(xq, dtype='float32')
index = faiss.IndexFlat(d, metric_type)
if ngpu == -1:
ngpu = faiss.get_num_gpus()
if ngpu:
LOG.info('running on %d GPUs' % ngpu)
co = faiss.GpuMultipleClonerOptions()
co.shard = shard
index_gpu = faiss.index_cpu_to_all_gpus(index, co=co, ngpu=ngpu)
# compute ground-truth by blocks
i0 = 0
D = [[] for _i in range(nq)]
I = [[] for _i in range(nq)]
for xbi in db_iterator:
ni = xbi.shape[0]
if ngpu > 0:
index_gpu.add(xbi)
lims_i, Di, Ii = range_search_gpu(xq, threshold, index_gpu, xbi)
index_gpu.reset()
else:
index.add(xbi)
lims_i, Di, Ii = index.range_search(xq, threshold)
index.reset()
Ii += i0
for j in range(nq):
l0, l1 = lims_i[j], lims_i[j + 1]
if l1 > l0:
D[j].append(Di[l0:l1])
I[j].append(Ii[l0:l1])
i0 += ni
LOG.info("%d db elements, %.3f s" % (i0, time.time() - t0))
empty_I = np.zeros(0, dtype='int64')
empty_D = np.zeros(0, dtype='float32')
# import pdb; pdb.set_trace()
D = [(np.hstack(i) if i != [] else empty_D) for i in D]
I = [(np.hstack(i) if i != [] else empty_I) for i in I]
sizes = [len(i) for i in I]
assert len(sizes) == nq
lims = np.zeros(nq + 1, dtype="uint64")
lims[1:] = np.cumsum(sizes)
return lims, np.hstack(D), np.hstack(I)
def threshold_radius_nres(nres, dis, ids, thresh, keep_max=False):
""" select a set of results """
if keep_max:
mask = dis > thresh
else:
mask = dis < thresh
new_nres = np.zeros_like(nres)
o = 0
for i, nr in enumerate(nres):
nr = int(nr) # avoid issues with int64 + uint64
new_nres[i] = mask[o:o + nr].sum()
o += nr
return new_nres, dis[mask], ids[mask]
def threshold_radius(lims, dis, ids, thresh, keep_max=False):
""" restrict range-search results to those below a given radius """
if keep_max:
mask = dis > thresh
else:
mask = dis < thresh
new_lims = np.zeros_like(lims)
n = len(lims) - 1
for i in range(n):
l0, l1 = lims[i], lims[i + 1]
new_lims[i + 1] = new_lims[i] + mask[l0:l1].sum()
return new_lims, dis[mask], ids[mask]
def apply_maxres(res_batches, target_nres, keep_max=False):
"""find radius that reduces number of results to target_nres, and
applies it in-place to the result batches used in
range_search_max_results"""
alldis = np.hstack([dis for _, dis, _ in res_batches])
assert len(alldis) > target_nres
if keep_max:
alldis.partition(len(alldis) - target_nres - 1)
radius = alldis[-1 - target_nres]
else:
alldis.partition(target_nres)
radius = alldis[target_nres]
if alldis.dtype == 'float32':
radius = float(radius)
else:
radius = int(radius)
LOG.debug(' setting radius to %s' % radius)
totres = 0
for i, (nres, dis, ids) in enumerate(res_batches):
nres, dis, ids = threshold_radius_nres(
nres, dis, ids, radius, keep_max=keep_max)
totres += len(dis)
res_batches[i] = nres, dis, ids
LOG.debug(' updated previous results, new nb results %d' % totres)
return radius, totres
def range_search_max_results(index, query_iterator, radius,
max_results=None, min_results=None,
shard=False, ngpu=0, clip_to_min=False):
"""Performs a range search with many queries (given by an iterator)
and adjusts the threshold on-the-fly so that the total results
table does not grow larger than max_results.
If ngpu != 0, the function moves the index to this many GPUs to
speed up search.
"""
# TODO: all result manipulations are in python, should move to C++ if perf
# critical
is_binary_index = isinstance(index, faiss.IndexBinary)
if min_results is None:
assert max_results is not None
min_results = int(0.8 * max_results)
if max_results is None:
assert min_results is not None
max_results = int(min_results * 1.5)
if ngpu == -1:
ngpu = faiss.get_num_gpus()
if ngpu:
LOG.info('running on %d GPUs' % ngpu)
co = faiss.GpuMultipleClonerOptions()
co.shard = shard
index_gpu = faiss.index_cpu_to_all_gpus(index, co=co, ngpu=ngpu)
else:
index_gpu = None
t_start = time.time()
t_search = t_post_process = 0
qtot = totres = raw_totres = 0
res_batches = []
for xqi in query_iterator:
t0 = time.time()
LOG.debug(f"searching {len(xqi)} vectors")
if index_gpu:
lims_i, Di, Ii = range_search_gpu(xqi, radius, index_gpu, index)
else:
lims_i, Di, Ii = index.range_search(xqi, radius)
nres_i = lims_i[1:] - lims_i[:-1]
raw_totres += len(Di)
qtot += len(xqi)
t1 = time.time()
if is_binary_index:
# weird Faiss quirk that returns floats for Hamming distances
Di = Di.astype('int16')
totres += len(Di)
res_batches.append((nres_i, Di, Ii))
if max_results is not None and totres > max_results:
LOG.info('too many results %d > %d, scaling back radius' %
(totres, max_results))
radius, totres = apply_maxres(
res_batches, min_results,
keep_max=index.metric_type == faiss.METRIC_INNER_PRODUCT
)
t2 = time.time()
t_search += t1 - t0
t_post_process += t2 - t1
LOG.debug(' [%.3f s] %d queries done, %d results' % (
time.time() - t_start, qtot, totres))
LOG.info(
'search done in %.3f s + %.3f s, total %d results, end threshold %g' % (
t_search, t_post_process, totres, radius)
)
if clip_to_min and totres > min_results:
radius, totres = apply_maxres(
res_batches, min_results,
keep_max=index.metric_type == faiss.METRIC_INNER_PRODUCT
)
nres = np.hstack([nres_i for nres_i, dis_i, ids_i in res_batches])
dis = np.hstack([dis_i for nres_i, dis_i, ids_i in res_batches])
ids = np.hstack([ids_i for nres_i, dis_i, ids_i in res_batches])
lims = np.zeros(len(nres) + 1, dtype='uint64')
lims[1:] = np.cumsum(nres)
return radius, lims, dis, ids
def exponential_query_iterator(xq, start_bs=32, max_bs=20000):
""" produces batches of progressively increasing sizes. This is useful to
adjust the search radius progressively without overflowing with
intermediate results """
nq = len(xq)
bs = start_bs
i = 0
while i < nq:
xqi = xq[i:i + bs]
yield xqi
if bs < max_bs:
bs *= 2
i += len(xqi)
|