File size: 23,846 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""



This is a set of function wrappers that override the default numpy versions.



Interoperability functions for pytorch and Faiss: Importing this will allow

pytorch Tensors (CPU or GPU) to be used as arguments to Faiss indexes and

other functions. Torch GPU tensors can only be used with Faiss GPU indexes.

If this is imported with a package that supports Faiss GPU, the necessary

stream synchronization with the current pytorch stream will be automatically

performed.



Numpy ndarrays can continue to be used in the Faiss python interface after

importing this file. All arguments must be uniformly either numpy ndarrays

or Torch tensors; no mixing is allowed.



"""


import faiss
import torch
import contextlib
import inspect
import sys
import numpy as np

def swig_ptr_from_UInt8Tensor(x):
    """ gets a Faiss SWIG pointer from a pytorch tensor (on CPU or GPU) """
    assert x.is_contiguous()
    assert x.dtype == torch.uint8
    return faiss.cast_integer_to_uint8_ptr(
        x.storage().data_ptr() + x.storage_offset())

def swig_ptr_from_HalfTensor(x):
    """ gets a Faiss SWIG pointer from a pytorch tensor (on CPU or GPU) """
    assert x.is_contiguous()
    assert x.dtype == torch.float16
    # no canonical half type in C/C++
    return faiss.cast_integer_to_void_ptr(
        x.storage().data_ptr() + x.storage_offset() * 2)

def swig_ptr_from_FloatTensor(x):
    """ gets a Faiss SWIG pointer from a pytorch tensor (on CPU or GPU) """
    assert x.is_contiguous()
    assert x.dtype == torch.float32
    return faiss.cast_integer_to_float_ptr(
        x.storage().data_ptr() + x.storage_offset() * 4)

def swig_ptr_from_IntTensor(x):
    """ gets a Faiss SWIG pointer from a pytorch tensor (on CPU or GPU) """
    assert x.is_contiguous()
    assert x.dtype == torch.int32, 'dtype=%s' % x.dtype
    return faiss.cast_integer_to_int_ptr(
        x.storage().data_ptr() + x.storage_offset() * 4)

def swig_ptr_from_IndicesTensor(x):
    """ gets a Faiss SWIG pointer from a pytorch tensor (on CPU or GPU) """
    assert x.is_contiguous()
    assert x.dtype == torch.int64, 'dtype=%s' % x.dtype
    return faiss.cast_integer_to_idx_t_ptr(
        x.storage().data_ptr() + x.storage_offset() * 8)

@contextlib.contextmanager
def using_stream(res, pytorch_stream=None):
    """ Creates a scoping object to make Faiss GPU use the same stream

        as pytorch, based on torch.cuda.current_stream().

        Or, a specific pytorch stream can be passed in as a second

        argument, in which case we will use that stream.

    """

    if pytorch_stream is None:
        pytorch_stream = torch.cuda.current_stream()

    # This is the cudaStream_t that we wish to use
    cuda_stream_s = faiss.cast_integer_to_cudastream_t(pytorch_stream.cuda_stream)

    # So we can revert GpuResources stream state upon exit
    prior_dev = torch.cuda.current_device()
    prior_stream = res.getDefaultStream(torch.cuda.current_device())

    res.setDefaultStream(torch.cuda.current_device(), cuda_stream_s)

    # Do the user work
    try:
        yield
    finally:
        res.setDefaultStream(prior_dev, prior_stream)

def torch_replace_method(the_class, name, replacement,

                         ignore_missing=False, ignore_no_base=False):
    try:
        orig_method = getattr(the_class, name)
    except AttributeError:
        if ignore_missing:
            return
        raise
    if orig_method.__name__ == 'torch_replacement_' + name:
        # replacement was done in parent class
        return

    # We should already have the numpy replacement methods patched
    assert ignore_no_base or (orig_method.__name__ == 'replacement_' + name)
    setattr(the_class, name + '_numpy', orig_method)
    setattr(the_class, name, replacement)

def handle_torch_Index(the_class):
    def torch_replacement_add(self, x):
        if type(x) is np.ndarray:
            # forward to faiss __init__.py base method
            return self.add_numpy(x)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.add_c(n, x_ptr)
        else:
            # CPU torch
            self.add_c(n, x_ptr)

    def torch_replacement_add_with_ids(self, x, ids):
        if type(x) is np.ndarray:
            # forward to faiss __init__.py base method
            return self.add_with_ids_numpy(x, ids)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        assert type(ids) is torch.Tensor
        assert ids.shape == (n, ), 'not same number of vectors as ids'
        ids_ptr = swig_ptr_from_IndicesTensor(ids)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.add_with_ids_c(n, x_ptr, ids_ptr)
        else:
            # CPU torch
            self.add_with_ids_c(n, x_ptr, ids_ptr)

    def torch_replacement_assign(self, x, k, labels=None):
        if type(x) is np.ndarray:
            # forward to faiss __init__.py base method
            return self.assign_numpy(x, k, labels)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if labels is None:
            labels = torch.empty(n, k, device=x.device, dtype=torch.int64)
        else:
            assert type(labels) is torch.Tensor
            assert labels.shape == (n, k)
        L_ptr = swig_ptr_from_IndicesTensor(labels)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.assign_c(n, x_ptr, L_ptr, k)
        else:
            # CPU torch
            self.assign_c(n, x_ptr, L_ptr, k)

        return labels

    def torch_replacement_train(self, x):
        if type(x) is np.ndarray:
            # forward to faiss __init__.py base method
            return self.train_numpy(x)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.train_c(n, x_ptr)
        else:
            # CPU torch
            self.train_c(n, x_ptr)

    def torch_replacement_search(self, x, k, D=None, I=None):
        if type(x) is np.ndarray:
            # forward to faiss __init__.py base method
            return self.search_numpy(x, k, D=D, I=I)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if D is None:
            D = torch.empty(n, k, device=x.device, dtype=torch.float32)
        else:
            assert type(D) is torch.Tensor
            assert D.shape == (n, k)
        D_ptr = swig_ptr_from_FloatTensor(D)

        if I is None:
            I = torch.empty(n, k, device=x.device, dtype=torch.int64)
        else:
            assert type(I) is torch.Tensor
            assert I.shape == (n, k)
        I_ptr = swig_ptr_from_IndicesTensor(I)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.search_c(n, x_ptr, k, D_ptr, I_ptr)
        else:
            # CPU torch
            self.search_c(n, x_ptr, k, D_ptr, I_ptr)

        return D, I

    def torch_replacement_search_and_reconstruct(self, x, k, D=None, I=None, R=None):
        if type(x) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.search_and_reconstruct_numpy(x, k, D=D, I=I, R=R)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if D is None:
            D = torch.empty(n, k, device=x.device, dtype=torch.float32)
        else:
            assert type(D) is torch.Tensor
            assert D.shape == (n, k)
        D_ptr = swig_ptr_from_FloatTensor(D)

        if I is None:
            I = torch.empty(n, k, device=x.device, dtype=torch.int64)
        else:
            assert type(I) is torch.Tensor
            assert I.shape == (n, k)
        I_ptr = swig_ptr_from_IndicesTensor(I)

        if R is None:
            R = torch.empty(n, k, d, device=x.device, dtype=torch.float32)
        else:
            assert type(R) is torch.Tensor
            assert R.shape == (n, k, d)
        R_ptr = swig_ptr_from_FloatTensor(R)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.search_and_reconstruct_c(n, x_ptr, k, D_ptr, I_ptr, R_ptr)
        else:
            # CPU torch
            self.search_and_reconstruct_c(n, x_ptr, k, D_ptr, I_ptr, R_ptr)

        return D, I, R

    def torch_replacement_remove_ids(self, x):
        # Not yet implemented
        assert type(x) is not torch.Tensor, 'remove_ids not yet implemented for torch'
        return self.remove_ids_numpy(x)

    def torch_replacement_reconstruct(self, key, x=None):
        # No tensor inputs are required, but with importing this module, we
        # assume that the default should be torch tensors. If we are passed a
        # numpy array, however, assume that the user is overriding this default
        if (x is not None) and (type(x) is np.ndarray):
            # Forward to faiss __init__.py base method
            return self.reconstruct_numpy(key, x)

        # If the index is a CPU index, the default device is CPU, otherwise we
        # produce a GPU tensor
        device = torch.device('cpu')
        if hasattr(self, 'getDevice'):
            # same device as the index
            device = torch.device('cuda', self.getDevice())

        if x is None:
            x = torch.empty(self.d, device=device, dtype=torch.float32)
        else:
            assert type(x) is torch.Tensor
            assert x.shape == (self.d, )
        x_ptr = swig_ptr_from_FloatTensor(x)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.reconstruct_c(key, x_ptr)
        else:
            # CPU torch
            self.reconstruct_c(key, x_ptr)

        return x

    def torch_replacement_reconstruct_n(self, n0=0, ni=-1, x=None):
        if ni == -1:
            ni = self.ntotal

        # No tensor inputs are required, but with importing this module, we
        # assume that the default should be torch tensors. If we are passed a
        # numpy array, however, assume that the user is overriding this default
        if (x is not None) and (type(x) is np.ndarray):
            # Forward to faiss __init__.py base method
            return self.reconstruct_n_numpy(n0, ni, x)

        # If the index is a CPU index, the default device is CPU, otherwise we
        # produce a GPU tensor
        device = torch.device('cpu')
        if hasattr(self, 'getDevice'):
            # same device as the index
            device = torch.device('cuda', self.getDevice())

        if x is None:
            x = torch.empty(ni, self.d, device=device, dtype=torch.float32)
        else:
            assert type(x) is torch.Tensor
            assert x.shape == (ni, self.d)
        x_ptr = swig_ptr_from_FloatTensor(x)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.reconstruct_n_c(n0, ni, x_ptr)
        else:
            # CPU torch
            self.reconstruct_n_c(n0, ni, x_ptr)

        return x

    def torch_replacement_update_vectors(self, keys, x):
        if type(keys) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.update_vectors_numpy(keys, x)

        assert type(keys) is torch.Tensor
        (n, ) = keys.shape
        keys_ptr = swig_ptr_from_IndicesTensor(keys)

        assert type(x) is torch.Tensor
        assert x.shape == (n, self.d)
        x_ptr = swig_ptr_from_FloatTensor(x)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.update_vectors_c(n, keys_ptr, x_ptr)
        else:
            # CPU torch
            self.update_vectors_c(n, keys_ptr, x_ptr)

    # Until the GPU version is implemented, we do not support pre-allocated
    # output buffers
    def torch_replacement_range_search(self, x, thresh):
        if type(x) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.range_search_numpy(x, thresh)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        assert not x.is_cuda, 'Range search using GPU tensor not yet implemented'
        assert not hasattr(self, 'getDevice'), 'Range search on GPU index not yet implemented'

        res = faiss.RangeSearchResult(n)
        self.range_search_c(n, x_ptr, thresh, res)

        # get pointers and copy them
        # FIXME: no rev_swig_ptr equivalent for torch.Tensor, just convert
        # np to torch
        # NOTE: torch does not support np.uint64, just np.int64
        lims = torch.from_numpy(faiss.rev_swig_ptr(res.lims, n + 1).copy().astype('int64'))
        nd = int(lims[-1])
        D = torch.from_numpy(faiss.rev_swig_ptr(res.distances, nd).copy())
        I = torch.from_numpy(faiss.rev_swig_ptr(res.labels, nd).copy())

        return lims, D, I

    def torch_replacement_sa_encode(self, x, codes=None):
        if type(x) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.sa_encode_numpy(x, codes)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        if codes is None:
            codes = torch.empty(n, self.sa_code_size(), dtype=torch.uint8)
        else:
            assert codes.shape == (n, self.sa_code_size())
        codes_ptr = swig_ptr_from_UInt8Tensor(codes)

        if x.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.sa_encode_c(n, x_ptr, codes_ptr)
        else:
            # CPU torch
            self.sa_encode_c(n, x_ptr, codes_ptr)

        return codes

    def torch_replacement_sa_decode(self, codes, x=None):
        if type(codes) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.sa_decode_numpy(codes, x)

        assert type(codes) is torch.Tensor
        n, cs = codes.shape
        assert cs == self.sa_code_size()
        codes_ptr = swig_ptr_from_UInt8Tensor(codes)

        if x is None:
            x = torch.empty(n, self.d, dtype=torch.float32)
        else:
            assert type(x) is torch.Tensor
            assert x.shape == (n, self.d)
        x_ptr = swig_ptr_from_FloatTensor(x)

        if codes.is_cuda:
            assert hasattr(self, 'getDevice'), 'GPU tensor on CPU index not allowed'

            # On the GPU, use proper stream ordering
            with using_stream(self.getResources()):
                self.sa_decode_c(n, codes_ptr, x_ptr)
        else:
            # CPU torch
            self.sa_decode_c(n, codes_ptr, x_ptr)

        return x


    torch_replace_method(the_class, 'add', torch_replacement_add)
    torch_replace_method(the_class, 'add_with_ids', torch_replacement_add_with_ids)
    torch_replace_method(the_class, 'assign', torch_replacement_assign)
    torch_replace_method(the_class, 'train', torch_replacement_train)
    torch_replace_method(the_class, 'search', torch_replacement_search)
    torch_replace_method(the_class, 'remove_ids', torch_replacement_remove_ids)
    torch_replace_method(the_class, 'reconstruct', torch_replacement_reconstruct)
    torch_replace_method(the_class, 'reconstruct_n', torch_replacement_reconstruct_n)
    torch_replace_method(the_class, 'range_search', torch_replacement_range_search)
    torch_replace_method(the_class, 'update_vectors', torch_replacement_update_vectors,
                         ignore_missing=True)
    torch_replace_method(the_class, 'search_and_reconstruct',
                         torch_replacement_search_and_reconstruct, ignore_missing=True)
    torch_replace_method(the_class, 'sa_encode', torch_replacement_sa_encode)
    torch_replace_method(the_class, 'sa_decode', torch_replacement_sa_decode)

faiss_module = sys.modules['faiss']

# Re-patch anything that inherits from faiss.Index to add the torch bindings
for symbol in dir(faiss_module):
    obj = getattr(faiss_module, symbol)
    if inspect.isclass(obj):
        the_class = obj
        if issubclass(the_class, faiss.Index):
            handle_torch_Index(the_class)

# allows torch tensor usage with bfKnn
def torch_replacement_knn_gpu(res, xq, xb, k, D=None, I=None, metric=faiss.METRIC_L2, device=-1):
    if type(xb) is np.ndarray:
        # Forward to faiss __init__.py base method
        return faiss.knn_gpu_numpy(res, xq, xb, k, D, I, metric, device)

    nb, d = xb.size()
    if xb.is_contiguous():
        xb_row_major = True
    elif xb.t().is_contiguous():
        xb = xb.t()
        xb_row_major = False
    else:
        raise TypeError('matrix should be row or column-major')

    if xb.dtype == torch.float32:
        xb_type = faiss.DistanceDataType_F32
        xb_ptr = swig_ptr_from_FloatTensor(xb)
    elif xb.dtype == torch.float16:
        xb_type = faiss.DistanceDataType_F16
        xb_ptr = swig_ptr_from_HalfTensor(xb)
    else:
        raise TypeError('xb must be f32 or f16')

    nq, d2 = xq.size()
    assert d2 == d
    if xq.is_contiguous():
        xq_row_major = True
    elif xq.t().is_contiguous():
        xq = xq.t()
        xq_row_major = False
    else:
        raise TypeError('matrix should be row or column-major')

    if xq.dtype == torch.float32:
        xq_type = faiss.DistanceDataType_F32
        xq_ptr = swig_ptr_from_FloatTensor(xq)
    elif xq.dtype == torch.float16:
        xq_type = faiss.DistanceDataType_F16
        xq_ptr = swig_ptr_from_HalfTensor(xq)
    else:
        raise TypeError('xq must be f32 or f16')

    if D is None:
        D = torch.empty(nq, k, device=xb.device, dtype=torch.float32)
    else:
        assert D.shape == (nq, k)
        # interface takes void*, we need to check this
        assert (D.dtype == torch.float32)

    if I is None:
        I = torch.empty(nq, k, device=xb.device, dtype=torch.int64)
    else:
        assert I.shape == (nq, k)

    if I.dtype == torch.int64:
        I_type = faiss.IndicesDataType_I64
        I_ptr = swig_ptr_from_IndicesTensor(I)
    elif I.dtype == I.dtype == torch.int32:
        I_type = faiss.IndicesDataType_I32
        I_ptr = swig_ptr_from_IntTensor(I)
    else:
        raise TypeError('I must be i64 or i32')

    D_ptr = swig_ptr_from_FloatTensor(D)

    args = faiss.GpuDistanceParams()
    args.metric = metric
    args.k = k
    args.dims = d
    args.vectors = xb_ptr
    args.vectorsRowMajor = xb_row_major
    args.vectorType = xb_type
    args.numVectors = nb
    args.queries = xq_ptr
    args.queriesRowMajor = xq_row_major
    args.queryType = xq_type
    args.numQueries = nq
    args.outDistances = D_ptr
    args.outIndices = I_ptr
    args.outIndicesType = I_type
    args.device = device

    with using_stream(res):
        faiss.bfKnn(res, args)

    return D, I

torch_replace_method(faiss_module, 'knn_gpu', torch_replacement_knn_gpu, True, True)

# allows torch tensor usage with bfKnn for all pairwise distances
def torch_replacement_pairwise_distance_gpu(res, xq, xb, D=None, metric=faiss.METRIC_L2, device=-1):
    if type(xb) is np.ndarray:
        # Forward to faiss __init__.py base method
        return faiss.pairwise_distance_gpu_numpy(res, xq, xb, D, metric)

    nb, d = xb.size()
    if xb.is_contiguous():
        xb_row_major = True
    elif xb.t().is_contiguous():
        xb = xb.t()
        xb_row_major = False
    else:
        raise TypeError('xb matrix should be row or column-major')

    if xb.dtype == torch.float32:
        xb_type = faiss.DistanceDataType_F32
        xb_ptr = swig_ptr_from_FloatTensor(xb)
    elif xb.dtype == torch.float16:
        xb_type = faiss.DistanceDataType_F16
        xb_ptr = swig_ptr_from_HalfTensor(xb)
    else:
        raise TypeError('xb must be float32 or float16')

    nq, d2 = xq.size()
    assert d2 == d
    if xq.is_contiguous():
        xq_row_major = True
    elif xq.t().is_contiguous():
        xq = xq.t()
        xq_row_major = False
    else:
        raise TypeError('xq matrix should be row or column-major')

    if xq.dtype == torch.float32:
        xq_type = faiss.DistanceDataType_F32
        xq_ptr = swig_ptr_from_FloatTensor(xq)
    elif xq.dtype == torch.float16:
        xq_type = faiss.DistanceDataType_F16
        xq_ptr = swig_ptr_from_HalfTensor(xq)
    else:
        raise TypeError('xq must be float32 or float16')

    if D is None:
        D = torch.empty(nq, nb, device=xb.device, dtype=torch.float32)
    else:
        assert D.shape == (nq, nb)
        # interface takes void*, we need to check this
        assert (D.dtype == torch.float32)

    D_ptr = swig_ptr_from_FloatTensor(D)

    args = faiss.GpuDistanceParams()
    args.metric = metric
    args.k = -1 # selects all pairwise distance
    args.dims = d
    args.vectors = xb_ptr
    args.vectorsRowMajor = xb_row_major
    args.vectorType = xb_type
    args.numVectors = nb
    args.queries = xq_ptr
    args.queriesRowMajor = xq_row_major
    args.queryType = xq_type
    args.numQueries = nq
    args.outDistances = D_ptr
    args.device = device

    with using_stream(res):
        faiss.bfKnn(res, args)

    return D

torch_replace_method(faiss_module, 'pairwise_distance_gpu', torch_replacement_pairwise_distance_gpu, True, True)