Spaces:
Running
Running
File size: 21,049 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# @nolint
# not linting this file because it imports * from swigfaiss, which
# causes a ton of useless warnings.
import numpy as np
from faiss.loader import *
import faiss
import collections.abc
###########################################
# Wrapper for a few functions
###########################################
def kmin(array, k):
"""return k smallest values (and their indices) of the lines of a
float32 array"""
array = np.ascontiguousarray(array, dtype='float32')
m, n = array.shape
I = np.zeros((m, k), dtype='int64')
D = np.zeros((m, k), dtype='float32')
ha = faiss.float_maxheap_array_t()
ha.ids = swig_ptr(I)
ha.val = swig_ptr(D)
ha.nh = m
ha.k = k
ha.heapify()
ha.addn(n, swig_ptr(array))
ha.reorder()
return D, I
def kmax(array, k):
"""return k largest values (and their indices) of the lines of a
float32 array"""
array = np.ascontiguousarray(array, dtype='float32')
m, n = array.shape
I = np.zeros((m, k), dtype='int64')
D = np.zeros((m, k), dtype='float32')
ha = faiss.float_minheap_array_t()
ha.ids = swig_ptr(I)
ha.val = swig_ptr(D)
ha.nh = m
ha.k = k
ha.heapify()
ha.addn(n, swig_ptr(array))
ha.reorder()
return D, I
def pairwise_distances(xq, xb, metric=METRIC_L2, metric_arg=0):
"""compute the whole pairwise distance matrix between two sets of
vectors"""
xq = np.ascontiguousarray(xq, dtype='float32')
xb = np.ascontiguousarray(xb, dtype='float32')
nq, d = xq.shape
nb, d2 = xb.shape
assert d == d2
dis = np.empty((nq, nb), dtype='float32')
if metric == METRIC_L2:
pairwise_L2sqr(
d, nq, swig_ptr(xq),
nb, swig_ptr(xb),
swig_ptr(dis))
elif metric == METRIC_INNER_PRODUCT:
dis[:] = xq @ xb.T
else:
pairwise_extra_distances(
d, nq, swig_ptr(xq),
nb, swig_ptr(xb),
metric, metric_arg,
swig_ptr(dis))
return dis
def rand(n, seed=12345):
res = np.empty(n, dtype='float32')
float_rand(swig_ptr(res), res.size, seed)
return res
def randint(n, seed=12345, vmax=None):
res = np.empty(n, dtype='int64')
if vmax is None:
int64_rand(swig_ptr(res), res.size, seed)
else:
int64_rand_max(swig_ptr(res), res.size, vmax, seed)
return res
lrand = randint
def randn(n, seed=12345):
res = np.empty(n, dtype='float32')
float_randn(swig_ptr(res), res.size, seed)
return res
def checksum(a):
""" compute a checksum for quick-and-dirty comparisons of arrays """
a = a.view('uint8')
if a.ndim == 1:
return bvec_checksum(a.size, swig_ptr(a))
n, d = a.shape
cs = np.zeros(n, dtype='uint64')
bvecs_checksum(n, d, swig_ptr(a), swig_ptr(cs))
return cs
rand_smooth_vectors_c = rand_smooth_vectors
def rand_smooth_vectors(n, d, seed=1234):
res = np.empty((n, d), dtype='float32')
rand_smooth_vectors_c(n, d, swig_ptr(res), seed)
return res
def eval_intersection(I1, I2):
""" size of intersection between each line of two result tables"""
I1 = np.ascontiguousarray(I1, dtype='int64')
I2 = np.ascontiguousarray(I2, dtype='int64')
n = I1.shape[0]
assert I2.shape[0] == n
k1, k2 = I1.shape[1], I2.shape[1]
ninter = 0
for i in range(n):
ninter += ranklist_intersection_size(
k1, swig_ptr(I1[i]), k2, swig_ptr(I2[i]))
return ninter
def normalize_L2(x):
fvec_renorm_L2(x.shape[1], x.shape[0], swig_ptr(x))
bucket_sort_c = bucket_sort
def bucket_sort(tab, nbucket=None, nt=0):
"""Perform a bucket sort on a table of integers.
Parameters
----------
tab : array_like
elements to sort, max value nbucket - 1
nbucket : integer
number of buckets, None if unknown
nt : integer
number of threads to use (0 = use unthreaded codepath)
Returns
-------
lims : array_like
cumulative sum of bucket sizes (size vmax + 1)
perm : array_like
perm[lims[i] : lims[i + 1]] contains the indices of bucket #i (size tab.size)
"""
tab = np.ascontiguousarray(tab, dtype="int64")
if nbucket is None:
nbucket = int(tab.max() + 1)
lims = np.empty(nbucket + 1, dtype='int64')
perm = np.empty(tab.size, dtype='int64')
bucket_sort_c(
tab.size, faiss.swig_ptr(tab.view('uint64')),
nbucket, faiss.swig_ptr(lims), faiss.swig_ptr(perm),
nt
)
return lims, perm
matrix_bucket_sort_inplace_c = matrix_bucket_sort_inplace
def matrix_bucket_sort_inplace(tab, nbucket=None, nt=0):
"""Perform a bucket sort on a matrix, recording the original
row of each element.
Parameters
----------
tab : array_like
array of size (N, ncol) that contains the bucket ids, maximum
value nbucket - 1.
On output, it the elements are shuffled such that the flat array
tab.ravel()[lims[i] : lims[i + 1]] contains the row numbers
of each bucket entry.
nbucket : integer
number of buckets (the maximum value in tab should be nbucket - 1)
nt : integer
number of threads to use (0 = use unthreaded codepath)
Returns
-------
lims : array_like
cumulative sum of bucket sizes (size vmax + 1)
"""
assert tab.dtype == 'int32' or tab.dtype == 'int64'
nrow, ncol = tab.shape
if nbucket is None:
nbucket = int(tab.max() + 1)
lims = np.empty(nbucket + 1, dtype='int64')
matrix_bucket_sort_inplace_c(
nrow, ncol, faiss.swig_ptr(tab),
nbucket, faiss.swig_ptr(lims),
nt
)
return lims
###########################################
# ResultHeap
###########################################
class ResultHeap:
"""Accumulate query results from a sliced dataset. The final result will
be in self.D, self.I."""
def __init__(self, nq, k, keep_max=False):
"""
nq: number of query vectors,
k: number of results per query
keep_max: keep the top-k maximum values instead of the minima
"""
self.I = np.zeros((nq, k), dtype='int64')
self.D = np.zeros((nq, k), dtype='float32')
self.nq, self.k = nq, k
if keep_max:
heaps = float_minheap_array_t()
else:
heaps = float_maxheap_array_t()
heaps.k = k
heaps.nh = nq
heaps.val = swig_ptr(self.D)
heaps.ids = swig_ptr(self.I)
heaps.heapify()
self.heaps = heaps
def add_result(self, D, I):
"""
Add results for all heaps
D, I should be of size (nh, nres)
D, I do not need to be in a particular order (heap or sorted)
"""
nq, kd = D.shape
D = np.ascontiguousarray(D, dtype='float32')
I = np.ascontiguousarray(I, dtype='int64')
assert I.shape == (nq, kd)
assert nq == self.nq
self.heaps.addn_with_ids(
kd, swig_ptr(D),
swig_ptr(I), kd)
def add_result_subset(self, subset, D, I):
"""
Add results for a subset of heaps.
D, I should hold resutls for all the subset
as a special case, if I is 1D, then all ids are assumed to be the same
"""
nsubset, kd = D.shape
assert nsubset == len(subset)
assert (
I.ndim == 2 and D.shape == I.shape or
I.ndim == 1 and I.shape == (kd, )
)
D = np.ascontiguousarray(D, dtype='float32')
I = np.ascontiguousarray(I, dtype='int64')
subset = np.ascontiguousarray(subset, dtype='int64')
id_stride = 0 if I.ndim == 1 else kd
self.heaps.addn_query_subset_with_ids(
nsubset, swig_ptr(subset),
kd, swig_ptr(D), swig_ptr(I), id_stride
)
def finalize(self):
self.heaps.reorder()
def merge_knn_results(Dall, Iall, keep_max=False):
"""
Merge a set of sorted knn-results obtained from different shards in a dataset
Dall and Iall are of size (nshard, nq, k) each D[i, j] should be sorted
returns D, I of size (nq, k) as the merged result set
"""
assert Iall.shape == Dall.shape
nshard, n, k = Dall.shape
Dnew = np.empty((n, k), dtype=Dall.dtype)
Inew = np.empty((n, k), dtype=Iall.dtype)
func = merge_knn_results_CMax if keep_max else merge_knn_results_CMin
func(
n, k, nshard,
swig_ptr(Dall), swig_ptr(Iall),
swig_ptr(Dnew), swig_ptr(Inew)
)
return Dnew, Inew
######################################################
# Efficient ID to ID map
######################################################
class MapInt64ToInt64:
def __init__(self, capacity):
self.log2_capacity = int(np.log2(capacity))
assert capacity == 2 ** self.log2_capacity, "need power of 2 capacity"
self.capacity = capacity
self.tab = np.empty((capacity, 2), dtype='int64')
faiss.hashtable_int64_to_int64_init(self.log2_capacity, swig_ptr(self.tab))
def add(self, keys, vals):
n, = keys.shape
assert vals.shape == (n,)
faiss.hashtable_int64_to_int64_add(
self.log2_capacity, swig_ptr(self.tab),
n, swig_ptr(keys), swig_ptr(vals))
def lookup(self, keys):
n, = keys.shape
vals = np.empty((n,), dtype='int64')
faiss.hashtable_int64_to_int64_lookup(
self.log2_capacity, swig_ptr(self.tab),
n, swig_ptr(keys), swig_ptr(vals))
return vals
######################################################
# KNN function
######################################################
def knn(xq, xb, k, metric=METRIC_L2):
"""
Compute the k nearest neighbors of a vector without constructing an index
Parameters
----------
xq : array_like
Query vectors, shape (nq, d) where the dimension d is that same as xb
`dtype` must be float32.
xb : array_like
Database vectors, shape (nb, d) where dimension d is the same as xq
`dtype` must be float32.
k : int
Number of nearest neighbors.
distance_type : MetricType, optional
distance measure to use (either METRIC_L2 or METRIC_INNER_PRODUCT)
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (nq, k)
I : array_like
Labels of the nearest neighbors, shape (nq, k)
"""
xq = np.ascontiguousarray(xq, dtype='float32')
xb = np.ascontiguousarray(xb, dtype='float32')
nq, d = xq.shape
nb, d2 = xb.shape
assert d == d2
I = np.empty((nq, k), dtype='int64')
D = np.empty((nq, k), dtype='float32')
if metric == METRIC_L2:
knn_L2sqr(
swig_ptr(xq), swig_ptr(xb),
d, nq, nb, k, swig_ptr(D), swig_ptr(I)
)
elif metric == METRIC_INNER_PRODUCT:
knn_inner_product(
swig_ptr(xq), swig_ptr(xb),
d, nq, nb, k, swig_ptr(D), swig_ptr(I)
)
else:
raise NotImplementedError("only L2 and INNER_PRODUCT are supported")
return D, I
def knn_hamming(xq, xb, k, variant="hc"):
"""
Compute the k nearest neighbors of a set of vectors without constructing an index.
Parameters
----------
xq : array_like
Query vectors, shape (nq, d) where d is the number of bits / 8
`dtype` must be uint8.
xb : array_like
Database vectors, shape (nb, d) where d is the number of bits / 8
`dtype` must be uint8.
k : int
Number of nearest neighbors.
variant : string
Function variant to use, either "mc" (counter) or "hc" (heap)
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (nq, k)
I : array_like
Labels of the nearest neighbors, shape (nq, k)
"""
# other variant is "mc"
nq, d = xq.shape
nb, d2 = xb.shape
assert d == d2
D = np.empty((nq, k), dtype='int32')
I = np.empty((nq, k), dtype='int64')
if variant == "hc":
heap = faiss.int_maxheap_array_t()
heap.k = k
heap.nh = nq
heap.ids = faiss.swig_ptr(I)
heap.val = faiss.swig_ptr(D)
faiss.hammings_knn_hc(
heap, faiss.swig_ptr(xq), faiss.swig_ptr(xb), nb,
d, 1
)
elif variant == "mc":
faiss.hammings_knn_mc(
faiss.swig_ptr(xq), faiss.swig_ptr(xb), nq, nb, k, d,
faiss.swig_ptr(D), faiss.swig_ptr(I)
)
else:
raise NotImplementedError
return D, I
###########################################
# Kmeans object
###########################################
class Kmeans:
"""Object that performs k-means clustering and manages the centroids.
The `Kmeans` class is essentially a wrapper around the C++ `Clustering` object.
Parameters
----------
d : int
dimension of the vectors to cluster
k : int
number of clusters
gpu: bool or int, optional
False: don't use GPU
True: use all GPUs
number: use this many GPUs
progressive_dim_steps:
use a progressive dimension clustering (with that number of steps)
Subsequent parameters are fields of the Clustring object. The most important are:
niter: int, optional
clustering iterations
nredo: int, optional
redo clustering this many times and keep best
verbose: bool, optional
spherical: bool, optional
do we want normalized centroids?
int_centroids: bool, optional
round centroids coordinates to integer
seed: int, optional
seed for the random number generator
"""
def __init__(self, d, k, **kwargs):
"""d: input dimension, k: nb of centroids. Additional
parameters are passed on the ClusteringParameters object,
including niter=25, verbose=False, spherical = False
"""
self.d = d
self.reset(k)
self.gpu = False
if "progressive_dim_steps" in kwargs:
self.cp = ProgressiveDimClusteringParameters()
else:
self.cp = ClusteringParameters()
for k, v in kwargs.items():
if k == 'gpu':
if v == True or v == -1:
v = get_num_gpus()
self.gpu = v
else:
# if this raises an exception, it means that it is a non-existent field
getattr(self.cp, k)
setattr(self.cp, k, v)
self.set_index()
def set_index(self):
d = self.d
if self.cp.__class__ == ClusteringParameters:
if self.cp.spherical:
self.index = IndexFlatIP(d)
else:
self.index = IndexFlatL2(d)
if self.gpu:
self.index = faiss.index_cpu_to_all_gpus(self.index, ngpu=self.gpu)
else:
if self.gpu:
fac = GpuProgressiveDimIndexFactory(ngpu=self.gpu)
else:
fac = ProgressiveDimIndexFactory()
self.fac = fac
def reset(self, k=None):
""" prepare k-means object to perform a new clustering, possibly
with another number of centroids """
if k is not None:
self.k = int(k)
self.centroids = None
self.obj = None
self.iteration_stats = None
def train(self, x, weights=None, init_centroids=None):
""" Perform k-means clustering.
On output of the function call:
- the centroids are in the centroids field of size (`k`, `d`).
- the objective value at each iteration is in the array obj (size `niter`)
- detailed optimization statistics are in the array iteration_stats.
Parameters
----------
x : array_like
Training vectors, shape (n, d), `dtype` must be float32 and n should
be larger than the number of clusters `k`.
weights : array_like
weight associated to each vector, shape `n`
init_centroids : array_like
initial set of centroids, shape (n, d)
Returns
-------
final_obj: float
final optimization objective
"""
x = np.ascontiguousarray(x, dtype='float32')
n, d = x.shape
assert d == self.d
if self.cp.__class__ == ClusteringParameters:
# regular clustering
clus = Clustering(d, self.k, self.cp)
if init_centroids is not None:
nc, d2 = init_centroids.shape
assert d2 == d
faiss.copy_array_to_vector(init_centroids.ravel(), clus.centroids)
clus.train(x, self.index, weights)
else:
# not supported for progressive dim
assert weights is None
assert init_centroids is None
assert not self.cp.spherical
clus = ProgressiveDimClustering(d, self.k, self.cp)
clus.train(n, swig_ptr(x), self.fac)
centroids = faiss.vector_float_to_array(clus.centroids)
self.centroids = centroids.reshape(self.k, d)
stats = clus.iteration_stats
stats = [stats.at(i) for i in range(stats.size())]
self.obj = np.array([st.obj for st in stats])
# copy all the iteration_stats objects to a python array
stat_fields = 'obj time time_search imbalance_factor nsplit'.split()
self.iteration_stats = [
{field: getattr(st, field) for field in stat_fields}
for st in stats
]
return self.obj[-1] if self.obj.size > 0 else 0.0
def assign(self, x):
x = np.ascontiguousarray(x, dtype='float32')
assert self.centroids is not None, "should train before assigning"
self.index.reset()
self.index.add(self.centroids)
D, I = self.index.search(x, 1)
return D.ravel(), I.ravel()
###########################################
# Packing and unpacking bistrings
###########################################
def is_sequence(x):
return isinstance(x, collections.abc.Sequence)
pack_bitstrings_c = pack_bitstrings
def pack_bitstrings(a, nbit):
"""
Pack a set integers (i, j) where i=0:n and j=0:M into
n bitstrings.
Output is an uint8 array of size (n, code_size), where code_size is
such that at most 7 bits per code are wasted.
If nbit is an integer: all entries takes nbit bits.
If nbit is an array: entry (i, j) takes nbit[j] bits.
"""
n, M = a.shape
a = np.ascontiguousarray(a, dtype='int32')
if is_sequence(nbit):
nbit = np.ascontiguousarray(nbit, dtype='int32')
assert nbit.shape == (M,)
code_size = int((nbit.sum() + 7) // 8)
b = np.empty((n, code_size), dtype='uint8')
pack_bitstrings_c(
n, M, swig_ptr(nbit), swig_ptr(a), swig_ptr(b), code_size)
else:
code_size = (M * nbit + 7) // 8
b = np.empty((n, code_size), dtype='uint8')
pack_bitstrings_c(n, M, nbit, swig_ptr(a), swig_ptr(b), code_size)
return b
unpack_bitstrings_c = unpack_bitstrings
def unpack_bitstrings(b, M_or_nbits, nbit=None):
"""
Unpack a set integers (i, j) where i=0:n and j=0:M from
n bitstrings (encoded as uint8s).
Input is an uint8 array of size (n, code_size), where code_size is
such that at most 7 bits per code are wasted.
Two forms:
- when called with (array, M, nbit): there are M entries of size
nbit per row
- when called with (array, nbits): element (i, j) is encoded in
nbits[j] bits
"""
n, code_size = b.shape
if nbit is None:
nbit = np.ascontiguousarray(M_or_nbits, dtype='int32')
M = len(nbit)
min_code_size = int((nbit.sum() + 7) // 8)
assert code_size >= min_code_size
a = np.empty((n, M), dtype='int32')
unpack_bitstrings_c(
n, M, swig_ptr(nbit),
swig_ptr(b), code_size, swig_ptr(a))
else:
M = M_or_nbits
min_code_size = (M * nbit + 7) // 8
assert code_size >= min_code_size
a = np.empty((n, M), dtype='int32')
unpack_bitstrings_c(
n, M, nbit, swig_ptr(b), code_size, swig_ptr(a))
return a
|