Draken007's picture
Upload 7228 files
2a0bc63 verified
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import inspect
import faiss
import numpy as np
from faiss.loader import (
DirectMap,
IDSelector,
IDSelectorArray,
IDSelectorBatch,
OperatingPoints,
RangeSearchResult,
rev_swig_ptr,
swig_ptr,
try_extract_index_ivf,
)
##################################################################
# The functions below add or replace some methods for classes
# this is to be able to pass in numpy arrays directly
# The C++ version of the classnames will be suffixed with _c
#
# The docstrings in the wrappers are intended to be similar to numpy
# comments, they will appear with help(Class.method) or ?Class.method
# For methods that are not replaced, the C++ documentation will be used if
# swig 4.x is run with -doxygen.
##################################################################
# For most arrays we force the convesion to the target type with
# np.ascontiguousarray, but for uint8 codes, we raise a type error
# because it is unclear how the conversion should occur: with a view
# (= cast) or conversion?
def _check_dtype_uint8(codes):
if codes.dtype != 'uint8':
raise TypeError("Input argument %s must be ndarray of dtype "
" uint8, but found %s" % ("codes", codes.dtype))
return np.ascontiguousarray(codes)
def replace_method(the_class, name, replacement, ignore_missing=False):
""" Replaces a method in a class with another version. The old method
is renamed to method_name_c (because presumably it was implemented in C) """
try:
orig_method = getattr(the_class, name)
except AttributeError:
if ignore_missing:
return
raise
if orig_method.__name__ == 'replacement_' + name:
# replacement was done in parent class
return
setattr(the_class, name + '_c', orig_method)
setattr(the_class, name, replacement)
def handle_Clustering(the_class):
def replacement_train(self, x, index, weights=None):
"""Perform clustering on a set of vectors. The index is used for assignment.
Parameters
----------
x : array_like
Training vectors, shape (n, self.d). `dtype` must be float32.
index : faiss.Index
Index used for assignment. The dimension of the index should be `self.d`.
weights : array_like, optional
Per training sample weight (size n) used when computing the weighted
average to obtain the centroid (default is 1 for all training vectors).
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
if weights is not None:
weights = np.ascontiguousarray(weights, dtype='float32')
assert weights.shape == (n, )
self.train_c(n, swig_ptr(x), index, swig_ptr(weights))
else:
self.train_c(n, swig_ptr(x), index)
def replacement_train_encoded(self, x, codec, index, weights=None):
""" Perform clustering on a set of compressed vectors. The index is used for assignment.
The decompression is performed on-the-fly.
Parameters
----------
x : array_like
Training vectors, shape (n, codec.code_size()). `dtype` must be `uint8`.
codec : faiss.Index
Index used to decode the vectors. Should have dimension `self.d`.
index : faiss.Index
Index used for assignment. The dimension of the index should be `self.d`.
weigths : array_like, optional
Per training sample weight (size n) used when computing the weighted
average to obtain the centroid (default is 1 for all training vectors).
"""
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == codec.sa_code_size()
assert codec.d == index.d
if weights is not None:
weights = np.ascontiguousarray(weights, dtype='float32')
assert weights.shape == (n, )
self.train_encoded_c(n, swig_ptr(x), codec,
index, swig_ptr(weights))
else:
self.train_encoded_c(n, swig_ptr(x), codec, index)
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'train_encoded', replacement_train_encoded)
def handle_Clustering1D(the_class):
def replacement_train_exact(self, x):
"""Perform clustering on a set of 1D vectors.
Parameters
----------
x : array_like
Training vectors, shape (n, 1). `dtype` must be float32.
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
self.train_exact_c(n, swig_ptr(x))
replace_method(the_class, 'train_exact', replacement_train_exact)
def handle_Quantizer(the_class):
def replacement_train(self, x):
""" Train the quantizer on a set of training vectors.
Parameters
----------
x : array_like
Training vectors, shape (n, self.d). `dtype` must be float32.
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
self.train_c(n, swig_ptr(x))
def replacement_compute_codes(self, x):
""" Compute the codes corresponding to a set of vectors.
Parameters
----------
x : array_like
Vectors to encode, shape (n, self.d). `dtype` must be float32.
Returns
-------
codes : array_like
Corresponding code for each vector, shape (n, self.code_size)
and `dtype` uint8.
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
codes = np.empty((n, self.code_size), dtype='uint8')
self.compute_codes_c(swig_ptr(x), swig_ptr(codes), n)
return codes
def replacement_decode(self, codes):
"""Reconstruct an approximation of vectors given their codes.
Parameters
----------
codes : array_like
Codes to decode, shape (n, self.code_size). `dtype` must be uint8.
Returns
-------
Reconstructed vectors for each code, shape `(n, d)` and `dtype` float32.
"""
n, cs = codes.shape
codes = _check_dtype_uint8(codes)
assert cs == self.code_size
x = np.empty((n, self.d), dtype='float32')
self.decode_c(swig_ptr(codes), swig_ptr(x), n)
return x
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'compute_codes', replacement_compute_codes)
replace_method(the_class, 'decode', replacement_decode)
def handle_NSG(the_class):
def replacement_build(self, x, graph):
n, d = x.shape
assert d == self.d
assert graph.ndim == 2
assert graph.shape[0] == n
K = graph.shape[1]
x = np.ascontiguousarray(x, dtype='float32')
graph = np.ascontiguousarray(graph, dtype='int64')
self.build_c(n, swig_ptr(x), swig_ptr(graph), K)
replace_method(the_class, 'build', replacement_build)
def handle_Index(the_class):
def replacement_add(self, x):
"""Adds vectors to the index.
The index must be trained before vectors can be added to it.
The vectors are implicitly numbered in sequence. When `n` vectors are
added to the index, they are given ids `ntotal`, `ntotal + 1`, ..., `ntotal + n - 1`.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
self.add_c(n, swig_ptr(x))
def replacement_add_with_ids(self, x, ids):
"""Adds vectors with arbitrary ids to the index (not all indexes support this).
The index must be trained before vectors can be added to it.
Vector `i` is stored in `x[i]` and has id `ids[i]`.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
ids : array_like
Array if ids of size n. The ids must be of type `int64`. Note that `-1` is reserved
in result lists to mean "not found" so it's better to not use it as an id.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
ids = np.ascontiguousarray(ids, dtype='int64')
assert ids.shape == (n, ), 'not same nb of vectors as ids'
self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))
def replacement_assign(self, x, k, labels=None):
"""Find the k nearest neighbors of the set of vectors x in the index.
This is the same as the `search` method, but discards the distances.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
labels : array_like, optional
Labels array to store the results.
Returns
-------
labels: array_like
Labels of the nearest neighbors, shape (n, k).
When not enough results are found, the label is set to -1
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
if labels is None:
labels = np.empty((n, k), dtype=np.int64)
else:
assert labels.shape == (n, k)
self.assign_c(n, swig_ptr(x), swig_ptr(labels), k)
return labels
def replacement_train(self, x):
"""Trains the index on a representative set of vectors.
The index must be trained before vectors can be added to it.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
self.train_c(n, swig_ptr(x))
def replacement_search(self, x, k, *, params=None, D=None, I=None):
"""Find the k nearest neighbors of the set of vectors x in the index.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
D : array_like, optional
Distance array to store the result.
I : array_like, optional
Labels array to store the results.
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (n, k). When not enough results are found
the label is set to +Inf or -Inf.
I : array_like
Labels of the nearest neighbors, shape (n, k).
When not enough results are found, the label is set to -1
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
assert k > 0
if D is None:
D = np.empty((n, k), dtype=np.float32)
else:
assert D.shape == (n, k)
if I is None:
I = np.empty((n, k), dtype=np.int64)
else:
assert I.shape == (n, k)
self.search_c(n, swig_ptr(x), k, swig_ptr(D), swig_ptr(I), params)
return D, I
def replacement_search_and_reconstruct(self, x, k, *, params=None, D=None, I=None, R=None):
"""Find the k nearest neighbors of the set of vectors x in the index,
and return an approximation of these vectors.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
D : array_like, optional
Distance array to store the result.
I : array_like, optional
Labels array to store the result.
R : array_like, optional
reconstruction array to store
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (n, k). When not enough results are found
the label is set to +Inf or -Inf.
I : array_like
Labels of the nearest neighbors, shape (n, k). When not enough results are found,
the label is set to -1
R : array_like
Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d).
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
assert k > 0
if D is None:
D = np.empty((n, k), dtype=np.float32)
else:
assert D.shape == (n, k)
if I is None:
I = np.empty((n, k), dtype=np.int64)
else:
assert I.shape == (n, k)
if R is None:
R = np.empty((n, k, d), dtype=np.float32)
else:
assert R.shape == (n, k, d)
self.search_and_reconstruct_c(
n, swig_ptr(x),
k, swig_ptr(D),
swig_ptr(I), swig_ptr(R), params
)
return D, I, R
def replacement_search_and_return_codes(
self, x, k, *,
include_listnos=False, params=None, D=None, I=None, codes=None):
"""Find the k nearest neighbors of the set of vectors x in the index,
and return the codes stored for these vectors
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
include_listnos : bool, optional
whether to include the list ids in the first bytes of each code
D : array_like, optional
Distance array to store the result.
I : array_like, optional
Labels array to store the result.
codes : array_like, optional
codes array to store
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (n, k). When not enough results are found
the label is set to +Inf or -Inf.
I : array_like
Labels of the nearest neighbors, shape (n, k). When not enough results are found,
the label is set to -1
R : array_like
Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d).
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
assert k > 0
if D is None:
D = np.empty((n, k), dtype=np.float32)
else:
assert D.shape == (n, k)
if I is None:
I = np.empty((n, k), dtype=np.int64)
else:
assert I.shape == (n, k)
code_size_1 = self.code_size
if include_listnos:
code_size_1 += self.coarse_code_size()
if codes is None:
codes = np.empty((n, k, code_size_1), dtype=np.uint8)
else:
assert codes.shape == (n, k, code_size_1)
self.search_and_return_codes_c(
n, swig_ptr(x),
k, swig_ptr(D),
swig_ptr(I), swig_ptr(codes), include_listnos,
params
)
return D, I, codes
def replacement_remove_ids(self, x):
"""Remove some ids from the index.
This is a O(ntotal) operation by default, so could be expensive.
Parameters
----------
x : array_like or faiss.IDSelector
Either an IDSelector that returns True for vectors to remove, or a
list of ids to reomove (1D array of int64). When `x` is a list,
it is wrapped into an IDSelector.
Returns
-------
n_remove: int
number of vectors that were removed
"""
if isinstance(x, IDSelector):
sel = x
else:
assert x.ndim == 1
index_ivf = try_extract_index_ivf(self)
x = np.ascontiguousarray(x, dtype='int64')
if index_ivf and index_ivf.direct_map.type == DirectMap.Hashtable:
sel = IDSelectorArray(x.size, swig_ptr(x))
else:
sel = IDSelectorBatch(x.size, swig_ptr(x))
return self.remove_ids_c(sel)
def replacement_reconstruct(self, key, x=None):
"""Approximate reconstruction of one vector from the index.
Parameters
----------
key : int
Id of the vector to reconstruct
x : array_like, optional
pre-allocated array to store the results
Returns
-------
x : array_like reconstructed vector, size `self.d`, `dtype`=float32
"""
if x is None:
x = np.empty(self.d, dtype=np.float32)
else:
assert x.shape == (self.d, )
self.reconstruct_c(key, swig_ptr(x))
return x
def replacement_reconstruct_batch(self, key, x=None):
"""Approximate reconstruction of several vectors from the index.
Parameters
----------
key : array of ints
Ids of the vectors to reconstruct
x : array_like, optional
pre-allocated array to store the results
Returns
-------
x : array_like
reconstrcuted vectors, size `len(key), self.d`
"""
key = np.ascontiguousarray(key, dtype='int64')
n, = key.shape
if x is None:
x = np.empty((n, self.d), dtype=np.float32)
else:
assert x.shape == (n, self.d)
self.reconstruct_batch_c(n, swig_ptr(key), swig_ptr(x))
return x
def replacement_reconstruct_n(self, n0=0, ni=-1, x=None):
"""Approximate reconstruction of vectors `n0` ... `n0 + ni - 1` from the index.
Missing vectors trigger an exception.
Parameters
----------
n0 : int
Id of the first vector to reconstruct (default 0)
ni : int
Number of vectors to reconstruct (-1 = default = ntotal)
x : array_like, optional
pre-allocated array to store the results
Returns
-------
x : array_like
Reconstructed vectors, size (`ni`, `self.d`), `dtype`=float32
"""
if ni == -1:
ni = self.ntotal - n0
if x is None:
x = np.empty((ni, self.d), dtype=np.float32)
else:
assert x.shape == (ni, self.d)
self.reconstruct_n_c(n0, ni, swig_ptr(x))
return x
def replacement_update_vectors(self, keys, x):
n = keys.size
assert keys.shape == (n, )
assert x.shape == (n, self.d)
x = np.ascontiguousarray(x, dtype='float32')
keys = np.ascontiguousarray(keys, dtype='int64')
self.update_vectors_c(n, swig_ptr(keys), swig_ptr(x))
# No support passed-in for output buffers
def replacement_range_search(self, x, thresh, *, params=None):
"""Search vectors that are within a distance of the query vectors.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
thresh : float
Threshold to select neighbors. All elements within this radius are returned,
except for maximum inner product indexes, where the elements above the
threshold are returned
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
Returns
-------
lims: array_like
Starting index of the results for each query vector, size n+1.
D : array_like
Distances of the nearest neighbors, shape `lims[n]`. The distances for
query i are in `D[lims[i]:lims[i+1]]`.
I : array_like
Labels of nearest neighbors, shape `lims[n]`. The labels for query i
are in `I[lims[i]:lims[i+1]]`.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
thresh = float(thresh)
res = RangeSearchResult(n)
self.range_search_c(n, swig_ptr(x), thresh, res, params)
# get pointers and copy them
lims = rev_swig_ptr(res.lims, n + 1).copy()
nd = int(lims[-1])
D = rev_swig_ptr(res.distances, nd).copy()
I = rev_swig_ptr(res.labels, nd).copy()
return lims, D, I
def replacement_search_preassigned(self, x, k, Iq, Dq, *, params=None, D=None, I=None):
"""Find the k nearest neighbors of the set of vectors x in an IVF index,
with precalculated coarse quantization assignment.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
Dq : array_like, optional
Distance array to the centroids, size (n, nprobe)
Iq : array_like, optional
Nearest centroids, size (n, nprobe)
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
D : array_like, optional
Distance array to store the result.
I : array_like, optional
Labels array to store the results.
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (n, k). When not enough results are found
the label is set to +Inf or -Inf.
I : array_like
Labels of the nearest neighbors, shape (n, k).
When not enough results are found, the label is set to -1
"""
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d
assert k > 0
if D is None:
D = np.empty((n, k), dtype=np.float32)
else:
assert D.shape == (n, k)
if I is None:
I = np.empty((n, k), dtype=np.int64)
else:
assert I.shape == (n, k)
Iq = np.ascontiguousarray(Iq, dtype='int64')
assert params is None, "params not supported"
assert Iq.shape == (n, self.nprobe)
if Dq is not None:
Dq = np.ascontiguousarray(Dq, dtype='float32')
assert Dq.shape == Iq.shape
self.search_preassigned_c(
n, swig_ptr(x),
k,
swig_ptr(Iq), swig_ptr(Dq),
swig_ptr(D), swig_ptr(I),
False
)
return D, I
def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None):
"""Search vectors that are within a distance of the query vectors.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
thresh : float
Threshold to select neighbors. All elements within this radius are returned,
except for maximum inner product indexes, where the elements above the
threshold are returned
Iq : array_like, optional
Nearest centroids, size (n, nprobe)
Dq : array_like, optional
Distance array to the centroids, size (n, nprobe)
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
Returns
-------
lims: array_like
Starting index of the results for each query vector, size n+1.
D : array_like
Distances of the nearest neighbors, shape `lims[n]`. The distances for
query i are in `D[lims[i]:lims[i+1]]`.
I : array_like
Labels of nearest neighbors, shape `lims[n]`. The labels for query i
are in `I[lims[i]:lims[i+1]]`.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
Iq = np.ascontiguousarray(Iq, dtype='int64')
assert params is None, "params not supported"
assert Iq.shape == (n, self.nprobe)
if Dq is not None:
Dq = np.ascontiguousarray(Dq, dtype='float32')
assert Dq.shape == Iq.shape
thresh = float(thresh)
res = RangeSearchResult(n)
self.range_search_preassigned_c(
n, swig_ptr(x), thresh,
swig_ptr(Iq), swig_ptr(Dq),
res
)
# get pointers and copy them
lims = rev_swig_ptr(res.lims, n + 1).copy()
nd = int(lims[-1])
D = rev_swig_ptr(res.distances, nd).copy()
I = rev_swig_ptr(res.labels, nd).copy()
return lims, D, I
def replacement_sa_encode(self, x, codes=None):
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
if codes is None:
codes = np.empty((n, self.sa_code_size()), dtype=np.uint8)
else:
assert codes.shape == (n, self.sa_code_size())
self.sa_encode_c(n, swig_ptr(x), swig_ptr(codes))
return codes
def replacement_sa_decode(self, codes, x=None):
n, cs = codes.shape
assert cs == self.sa_code_size()
codes = _check_dtype_uint8(codes)
if x is None:
x = np.empty((n, self.d), dtype=np.float32)
else:
assert x.shape == (n, self.d)
self.sa_decode_c(n, swig_ptr(codes), swig_ptr(x))
return x
def replacement_add_sa_codes(self, codes, ids=None):
n, cs = codes.shape
assert cs == self.sa_code_size()
codes = _check_dtype_uint8(codes)
if ids is not None:
assert ids.shape == (n,)
ids = swig_ptr(ids)
self.add_sa_codes_c(n, swig_ptr(codes), ids)
def replacement_permute_entries(self, perm):
n, = perm.shape
assert n == self.ntotal
perm = np.ascontiguousarray(perm, dtype='int64')
self.permute_entries_c(faiss.swig_ptr(perm))
replace_method(the_class, 'add', replacement_add)
replace_method(the_class, 'add_with_ids', replacement_add_with_ids)
replace_method(the_class, 'assign', replacement_assign)
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'search', replacement_search)
replace_method(the_class, 'remove_ids', replacement_remove_ids)
replace_method(the_class, 'reconstruct', replacement_reconstruct)
replace_method(the_class, 'reconstruct_batch',
replacement_reconstruct_batch)
replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n)
replace_method(the_class, 'range_search', replacement_range_search)
replace_method(the_class, 'update_vectors', replacement_update_vectors,
ignore_missing=True)
replace_method(the_class, 'search_and_reconstruct',
replacement_search_and_reconstruct, ignore_missing=True)
replace_method(the_class, 'search_and_return_codes',
replacement_search_and_return_codes, ignore_missing=True)
# these ones are IVF-specific
replace_method(the_class, 'search_preassigned',
replacement_search_preassigned, ignore_missing=True)
replace_method(the_class, 'range_search_preassigned',
replacement_range_search_preassigned, ignore_missing=True)
replace_method(the_class, 'sa_encode', replacement_sa_encode)
replace_method(the_class, 'sa_decode', replacement_sa_decode)
replace_method(the_class, 'add_sa_codes', replacement_add_sa_codes,
ignore_missing=True)
replace_method(the_class, 'permute_entries', replacement_permute_entries,
ignore_missing=True)
# get/set state for pickle
# the data is serialized to std::vector -> numpy array -> python bytes
# so not very efficient for now.
def index_getstate(self):
return {"this": faiss.serialize_index(self).tobytes()}
def index_setstate(self, st):
index2 = faiss.deserialize_index(np.frombuffer(st["this"], dtype="uint8"))
self.this = index2.this
the_class.__getstate__ = index_getstate
the_class.__setstate__ = index_setstate
def handle_IndexBinary(the_class):
def replacement_add(self, x):
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == self.code_size
self.add_c(n, swig_ptr(x))
def replacement_add_with_ids(self, x, ids):
n, d = x.shape
x = _check_dtype_uint8(x)
ids = np.ascontiguousarray(ids, dtype='int64')
assert d == self.code_size
assert ids.shape == (n, ), 'not same nb of vectors as ids'
self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))
def replacement_train(self, x):
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == self.code_size
self.train_c(n, swig_ptr(x))
def replacement_reconstruct(self, key):
x = np.empty(self.code_size, dtype=np.uint8)
self.reconstruct_c(key, swig_ptr(x))
return x
def replacement_reconstruct_n(self, n0=0, ni=-1, x=None):
if ni == -1:
ni = self.ntotal - n0
if x is None:
x = np.empty((ni, self.code_size), dtype=np.uint8)
else:
assert x.shape == (ni, self.code_size)
self.reconstruct_n_c(n0, ni, swig_ptr(x))
return x
def replacement_search(self, x, k):
x = _check_dtype_uint8(x)
n, d = x.shape
assert d == self.code_size
assert k > 0
distances = np.empty((n, k), dtype=np.int32)
labels = np.empty((n, k), dtype=np.int64)
self.search_c(n, swig_ptr(x),
k, swig_ptr(distances),
swig_ptr(labels))
return distances, labels
def replacement_search_preassigned(self, x, k, Iq, Dq):
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == self.code_size
assert k > 0
D = np.empty((n, k), dtype=np.int32)
I = np.empty((n, k), dtype=np.int64)
Iq = np.ascontiguousarray(Iq, dtype='int64')
assert Iq.shape == (n, self.nprobe)
if Dq is not None:
Dq = np.ascontiguousarray(Dq, dtype='int32')
assert Dq.shape == Iq.shape
self.search_preassigned_c(
n, swig_ptr(x),
k,
swig_ptr(Iq), swig_ptr(Dq),
swig_ptr(D), swig_ptr(I),
False
)
return D, I
def replacement_range_search(self, x, thresh):
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == self.code_size
res = RangeSearchResult(n)
self.range_search_c(n, swig_ptr(x), thresh, res)
# get pointers and copy them
lims = rev_swig_ptr(res.lims, n + 1).copy()
nd = int(lims[-1])
D = rev_swig_ptr(res.distances, nd).copy()
I = rev_swig_ptr(res.labels, nd).copy()
return lims, D, I
def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None):
n, d = x.shape
x = _check_dtype_uint8(x)
assert d == self.code_size
Iq = np.ascontiguousarray(Iq, dtype='int64')
assert params is None, "params not supported"
assert Iq.shape == (n, self.nprobe)
if Dq is not None:
Dq = np.ascontiguousarray(Dq, dtype='int32')
assert Dq.shape == Iq.shape
thresh = int(thresh)
res = RangeSearchResult(n)
self.range_search_preassigned_c(
n, swig_ptr(x), thresh,
swig_ptr(Iq), swig_ptr(Dq),
res
)
# get pointers and copy them
lims = rev_swig_ptr(res.lims, n + 1).copy()
nd = int(lims[-1])
D = rev_swig_ptr(res.distances, nd).copy()
I = rev_swig_ptr(res.labels, nd).copy()
return lims, D, I
def replacement_remove_ids(self, x):
if isinstance(x, IDSelector):
sel = x
else:
assert x.ndim == 1
x = np.ascontiguousarray(x, dtype='int64')
sel = IDSelectorBatch(x.size, swig_ptr(x))
return self.remove_ids_c(sel)
replace_method(the_class, 'add', replacement_add)
replace_method(the_class, 'add_with_ids', replacement_add_with_ids)
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'search', replacement_search)
replace_method(the_class, 'range_search', replacement_range_search)
replace_method(the_class, 'reconstruct', replacement_reconstruct)
replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n)
replace_method(the_class, 'remove_ids', replacement_remove_ids)
replace_method(the_class, 'search_preassigned',
replacement_search_preassigned, ignore_missing=True)
replace_method(the_class, 'range_search_preassigned',
replacement_range_search_preassigned, ignore_missing=True)
def handle_VectorTransform(the_class):
def apply_method(self, x):
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d_in
y = np.empty((n, self.d_out), dtype=np.float32)
self.apply_noalloc(n, swig_ptr(x), swig_ptr(y))
return y
def replacement_reverse_transform(self, x):
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d_out
y = np.empty((n, self.d_in), dtype=np.float32)
self.reverse_transform_c(n, swig_ptr(x), swig_ptr(y))
return y
def replacement_vt_train(self, x):
n, d = x.shape
x = np.ascontiguousarray(x, dtype='float32')
assert d == self.d_in
self.train_c(n, swig_ptr(x))
replace_method(the_class, 'train', replacement_vt_train)
# apply is reserved in Pyton...
the_class.apply_py = apply_method
the_class.apply = apply_method
replace_method(the_class, 'reverse_transform',
replacement_reverse_transform)
def handle_AutoTuneCriterion(the_class):
def replacement_set_groundtruth(self, D, I):
if D:
assert I.shape == D.shape
self.nq, self.gt_nnn = I.shape
self.set_groundtruth_c(
self.gt_nnn, swig_ptr(D) if D else None, swig_ptr(I))
def replacement_evaluate(self, D, I):
assert I.shape == D.shape
assert I.shape == (self.nq, self.nnn)
return self.evaluate_c(swig_ptr(D), swig_ptr(I))
replace_method(the_class, 'set_groundtruth', replacement_set_groundtruth)
replace_method(the_class, 'evaluate', replacement_evaluate)
def handle_ParameterSpace(the_class):
def replacement_explore(self, index, xq, crit):
assert xq.shape == (crit.nq, index.d)
xq = np.ascontiguousarray(xq, dtype='float32')
ops = OperatingPoints()
self.explore_c(index, crit.nq, swig_ptr(xq),
crit, ops)
return ops
replace_method(the_class, 'explore', replacement_explore)
def handle_MatrixStats(the_class):
original_init = the_class.__init__
def replacement_init(self, m):
assert len(m.shape) == 2
m = np.ascontiguousarray(m, dtype='float32')
original_init(self, m.shape[0], m.shape[1], swig_ptr(m))
the_class.__init__ = replacement_init
def handle_IOWriter(the_class):
""" add a write_bytes method """
def write_bytes(self, b):
return self(swig_ptr(b), 1, len(b))
the_class.write_bytes = write_bytes
def handle_IOReader(the_class):
""" add a read_bytes method """
def read_bytes(self, totsz):
buf = bytearray(totsz)
was_read = self(swig_ptr(buf), 1, len(buf))
return bytes(buf[:was_read])
the_class.read_bytes = read_bytes
def handle_IndexRowwiseMinMax(the_class):
def replacement_train_inplace(self, x):
"""Trains the index on a representative set of vectors inplace.
The index must be trained before vectors can be added to it.
This call WILL change the values in the input array, because
of two scaling proceduces being performed inplace.
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
self.train_inplace_c(n, swig_ptr(x))
replace_method(the_class, 'train_inplace', replacement_train_inplace)
def handle_CodePacker(the_class):
def replacement_pack_1(self, x, offset, block):
assert x.shape == (self.code_size,)
nblock, block_size = block.shape
assert block_size == self.block_size
assert 0 <= offset < block_size * self.nvec
self.pack_1_c(swig_ptr(x), offset, faiss.swig_ptr(block))
def replacement_unpack_1(self, block, offset):
nblock, block_size = block.shape
assert block_size == self.block_size
assert 0 <= offset < block_size * self.nvec
x = np.zeros(self.code_size, dtype='uint8')
self.unpack_1_c(faiss.swig_ptr(block), offset, swig_ptr(x))
return x
replace_method(the_class, 'pack_1', replacement_pack_1)
replace_method(the_class, 'unpack_1', replacement_unpack_1)
######################################################
# MapLong2Long interface
######################################################
def handle_MapLong2Long(the_class):
def replacement_map_add(self, keys, vals):
n, = keys.shape
assert (n,) == vals.shape
self.add_c(n, swig_ptr(keys), swig_ptr(vals))
def replacement_map_search_multiple(self, keys):
n, = keys.shape
vals = np.empty(n, dtype='int64')
self.search_multiple_c(n, swig_ptr(keys), swig_ptr(vals))
return vals
replace_method(the_class, 'add', replacement_map_add)
replace_method(the_class, 'search_multiple',
replacement_map_search_multiple)
######################################################
# SearchParameters and related interface
######################################################
def add_to_referenced_objects(self, ref):
if not hasattr(self, 'referenced_objects'):
self.referenced_objects = [ref]
else:
self.referenced_objects.append(ref)
class RememberSwigOwnership:
"""
SWIG's seattr transfers ownership of SWIG wrapped objects to the class
(btw this seems to contradict https://www.swig.org/Doc1.3/Python.html#Python_nn22
31.4.2)
This interferes with how we manage ownership: with the referenced_objects
table. Therefore, we reset the thisown field in this context manager.
"""
def __init__(self, obj):
self.obj = obj
def __enter__(self):
if hasattr(self.obj, "thisown"):
self.old_thisown = self.obj.thisown
else:
self.old_thisown = None
def __exit__(self, *ignored):
if self.old_thisown is not None:
self.obj.thisown = self.old_thisown
def handle_SearchParameters(the_class):
""" this wrapper is to enable initializations of the form
SearchParametersXX(a=3, b=SearchParamsYY)
This also requires the enclosing class to keep a reference on the
sub-object, since the C++ code assumes the object ownwership is
handled externally.
"""
the_class.original_init = the_class.__init__
def replacement_init(self, **args):
self.original_init()
for k, v in args.items():
assert hasattr(self, k)
with RememberSwigOwnership(v):
setattr(self, k, v)
if type(v) not in (int, float, bool, str):
add_to_referenced_objects(self, v)
the_class.__init__ = replacement_init
def handle_IDSelectorSubset(the_class, class_owns, force_int64=True):
the_class.original_init = the_class.__init__
def replacement_init(self, *args):
if len(args) == 1:
# assume it's an array
subset, = args
if force_int64:
subset = np.ascontiguousarray(subset, dtype='int64')
args = (len(subset), faiss.swig_ptr(subset))
if not class_owns:
add_to_referenced_objects(self, subset)
self.original_init(*args)
the_class.__init__ = replacement_init
def handle_CodeSet(the_class):
def replacement_insert(self, codes, inserted=None):
n, d = codes.shape
assert d == self.d
codes = np.ascontiguousarray(codes, dtype=np.uint8)
if inserted is None:
inserted = np.empty(n, dtype=bool)
else:
assert inserted.shape == (n, )
self.insert_c(n, swig_ptr(codes), swig_ptr(inserted))
return inserted
replace_method(the_class, 'insert', replacement_insert)