Draken007's picture
Upload 7228 files
2a0bc63 verified
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import faiss
def get_invlist(invlists, l):
""" returns the inverted lists content as a pair of (list_ids, list_codes).
The codes are reshaped to a proper size
"""
invlists = faiss.downcast_InvertedLists(invlists)
ls = invlists.list_size(l)
list_ids = np.zeros(ls, dtype='int64')
ids = codes = None
try:
ids = invlists.get_ids(l)
if ls > 0:
faiss.memcpy(faiss.swig_ptr(list_ids), ids, list_ids.nbytes)
codes = invlists.get_codes(l)
if invlists.code_size != faiss.InvertedLists.INVALID_CODE_SIZE:
list_codes = np.zeros((ls, invlists.code_size), dtype='uint8')
else:
# it's a BlockInvertedLists
npb = invlists.n_per_block
bs = invlists.block_size
ls_round = (ls + npb - 1) // npb
list_codes = np.zeros((ls_round, bs // npb, npb), dtype='uint8')
if ls > 0:
faiss.memcpy(faiss.swig_ptr(list_codes), codes, list_codes.nbytes)
finally:
if ids is not None:
invlists.release_ids(l, ids)
if codes is not None:
invlists.release_codes(l, codes)
return list_ids, list_codes
def get_invlist_sizes(invlists):
""" return the array of sizes of the inverted lists """
return np.array([
invlists.list_size(i)
for i in range(invlists.nlist)
], dtype='int64')
def print_object_fields(obj):
""" list values all fields of an object known to SWIG """
for name in obj.__class__.__swig_getmethods__:
print(f"{name} = {getattr(obj, name)}")
def get_pq_centroids(pq):
""" return the PQ centroids as an array """
cen = faiss.vector_to_array(pq.centroids)
return cen.reshape(pq.M, pq.ksub, pq.dsub)
def get_LinearTransform_matrix(pca):
""" extract matrix + bias from the PCA object
works for any linear transform (OPQ, random rotation, etc.)
"""
b = faiss.vector_to_array(pca.b)
A = faiss.vector_to_array(pca.A).reshape(pca.d_out, pca.d_in)
return A, b
def make_LinearTransform_matrix(A, b=None):
""" make a linear transform from a matrix and a bias term (optional)"""
d_out, d_in = A.shape
if b is not None:
assert b.shape == (d_out, )
lt = faiss.LinearTransform(d_in, d_out, b is not None)
faiss.copy_array_to_vector(A.ravel(), lt.A)
if b is not None:
faiss.copy_array_to_vector(b, lt.b)
lt.is_trained = True
lt.set_is_orthonormal()
return lt
def get_additive_quantizer_codebooks(aq):
""" return to codebooks of an additive quantizer """
codebooks = faiss.vector_to_array(aq.codebooks).reshape(-1, aq.d)
co = faiss.vector_to_array(aq.codebook_offsets)
return [
codebooks[co[i]:co[i + 1]]
for i in range(aq.M)
]
def get_flat_data(index):
""" copy and return the data matrix in an IndexFlat """
xb = faiss.vector_to_array(index.codes).view("float32")
return xb.reshape(index.ntotal, index.d)
def get_NSG_neighbors(nsg):
""" get the neighbor list for the vectors stored in the NSG structure, as
a N-by-K matrix of indices """
graph = nsg.get_final_graph()
neighbors = np.zeros((graph.N, graph.K), dtype='int32')
faiss.memcpy(
faiss.swig_ptr(neighbors),
graph.data,
neighbors.nbytes
)
return neighbors