# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect import faiss import numpy as np from faiss.loader import ( DirectMap, IDSelector, IDSelectorArray, IDSelectorBatch, OperatingPoints, RangeSearchResult, rev_swig_ptr, swig_ptr, try_extract_index_ivf, ) ################################################################## # The functions below add or replace some methods for classes # this is to be able to pass in numpy arrays directly # The C++ version of the classnames will be suffixed with _c # # The docstrings in the wrappers are intended to be similar to numpy # comments, they will appear with help(Class.method) or ?Class.method # For methods that are not replaced, the C++ documentation will be used if # swig 4.x is run with -doxygen. ################################################################## # For most arrays we force the convesion to the target type with # np.ascontiguousarray, but for uint8 codes, we raise a type error # because it is unclear how the conversion should occur: with a view # (= cast) or conversion? def _check_dtype_uint8(codes): if codes.dtype != 'uint8': raise TypeError("Input argument %s must be ndarray of dtype " " uint8, but found %s" % ("codes", codes.dtype)) return np.ascontiguousarray(codes) def replace_method(the_class, name, replacement, ignore_missing=False): """ Replaces a method in a class with another version. The old method is renamed to method_name_c (because presumably it was implemented in C) """ try: orig_method = getattr(the_class, name) except AttributeError: if ignore_missing: return raise if orig_method.__name__ == 'replacement_' + name: # replacement was done in parent class return setattr(the_class, name + '_c', orig_method) setattr(the_class, name, replacement) def handle_Clustering(the_class): def replacement_train(self, x, index, weights=None): """Perform clustering on a set of vectors. The index is used for assignment. Parameters ---------- x : array_like Training vectors, shape (n, self.d). `dtype` must be float32. index : faiss.Index Index used for assignment. The dimension of the index should be `self.d`. weights : array_like, optional Per training sample weight (size n) used when computing the weighted average to obtain the centroid (default is 1 for all training vectors). """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d if weights is not None: weights = np.ascontiguousarray(weights, dtype='float32') assert weights.shape == (n, ) self.train_c(n, swig_ptr(x), index, swig_ptr(weights)) else: self.train_c(n, swig_ptr(x), index) def replacement_train_encoded(self, x, codec, index, weights=None): """ Perform clustering on a set of compressed vectors. The index is used for assignment. The decompression is performed on-the-fly. Parameters ---------- x : array_like Training vectors, shape (n, codec.code_size()). `dtype` must be `uint8`. codec : faiss.Index Index used to decode the vectors. Should have dimension `self.d`. index : faiss.Index Index used for assignment. The dimension of the index should be `self.d`. weigths : array_like, optional Per training sample weight (size n) used when computing the weighted average to obtain the centroid (default is 1 for all training vectors). """ n, d = x.shape x = _check_dtype_uint8(x) assert d == codec.sa_code_size() assert codec.d == index.d if weights is not None: weights = np.ascontiguousarray(weights, dtype='float32') assert weights.shape == (n, ) self.train_encoded_c(n, swig_ptr(x), codec, index, swig_ptr(weights)) else: self.train_encoded_c(n, swig_ptr(x), codec, index) replace_method(the_class, 'train', replacement_train) replace_method(the_class, 'train_encoded', replacement_train_encoded) def handle_Clustering1D(the_class): def replacement_train_exact(self, x): """Perform clustering on a set of 1D vectors. Parameters ---------- x : array_like Training vectors, shape (n, 1). `dtype` must be float32. """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d self.train_exact_c(n, swig_ptr(x)) replace_method(the_class, 'train_exact', replacement_train_exact) def handle_Quantizer(the_class): def replacement_train(self, x): """ Train the quantizer on a set of training vectors. Parameters ---------- x : array_like Training vectors, shape (n, self.d). `dtype` must be float32. """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d self.train_c(n, swig_ptr(x)) def replacement_compute_codes(self, x): """ Compute the codes corresponding to a set of vectors. Parameters ---------- x : array_like Vectors to encode, shape (n, self.d). `dtype` must be float32. Returns ------- codes : array_like Corresponding code for each vector, shape (n, self.code_size) and `dtype` uint8. """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d codes = np.empty((n, self.code_size), dtype='uint8') self.compute_codes_c(swig_ptr(x), swig_ptr(codes), n) return codes def replacement_decode(self, codes): """Reconstruct an approximation of vectors given their codes. Parameters ---------- codes : array_like Codes to decode, shape (n, self.code_size). `dtype` must be uint8. Returns ------- Reconstructed vectors for each code, shape `(n, d)` and `dtype` float32. """ n, cs = codes.shape codes = _check_dtype_uint8(codes) assert cs == self.code_size x = np.empty((n, self.d), dtype='float32') self.decode_c(swig_ptr(codes), swig_ptr(x), n) return x replace_method(the_class, 'train', replacement_train) replace_method(the_class, 'compute_codes', replacement_compute_codes) replace_method(the_class, 'decode', replacement_decode) def handle_NSG(the_class): def replacement_build(self, x, graph): n, d = x.shape assert d == self.d assert graph.ndim == 2 assert graph.shape[0] == n K = graph.shape[1] x = np.ascontiguousarray(x, dtype='float32') graph = np.ascontiguousarray(graph, dtype='int64') self.build_c(n, swig_ptr(x), swig_ptr(graph), K) replace_method(the_class, 'build', replacement_build) def handle_Index(the_class): def replacement_add(self, x): """Adds vectors to the index. The index must be trained before vectors can be added to it. The vectors are implicitly numbered in sequence. When `n` vectors are added to the index, they are given ids `ntotal`, `ntotal + 1`, ..., `ntotal + n - 1`. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') self.add_c(n, swig_ptr(x)) def replacement_add_with_ids(self, x, ids): """Adds vectors with arbitrary ids to the index (not all indexes support this). The index must be trained before vectors can be added to it. Vector `i` is stored in `x[i]` and has id `ids[i]`. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. ids : array_like Array if ids of size n. The ids must be of type `int64`. Note that `-1` is reserved in result lists to mean "not found" so it's better to not use it as an id. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') ids = np.ascontiguousarray(ids, dtype='int64') assert ids.shape == (n, ), 'not same nb of vectors as ids' self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids)) def replacement_assign(self, x, k, labels=None): """Find the k nearest neighbors of the set of vectors x in the index. This is the same as the `search` method, but discards the distances. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. k : int Number of nearest neighbors. labels : array_like, optional Labels array to store the results. Returns ------- labels: array_like Labels of the nearest neighbors, shape (n, k). When not enough results are found, the label is set to -1 """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') if labels is None: labels = np.empty((n, k), dtype=np.int64) else: assert labels.shape == (n, k) self.assign_c(n, swig_ptr(x), swig_ptr(labels), k) return labels def replacement_train(self, x): """Trains the index on a representative set of vectors. The index must be trained before vectors can be added to it. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') self.train_c(n, swig_ptr(x)) def replacement_search(self, x, k, *, params=None, D=None, I=None): """Find the k nearest neighbors of the set of vectors x in the index. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. k : int Number of nearest neighbors. params : SearchParameters Search parameters of the current search (overrides the class-level params) D : array_like, optional Distance array to store the result. I : array_like, optional Labels array to store the results. Returns ------- D : array_like Distances of the nearest neighbors, shape (n, k). When not enough results are found the label is set to +Inf or -Inf. I : array_like Labels of the nearest neighbors, shape (n, k). When not enough results are found, the label is set to -1 """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d assert k > 0 if D is None: D = np.empty((n, k), dtype=np.float32) else: assert D.shape == (n, k) if I is None: I = np.empty((n, k), dtype=np.int64) else: assert I.shape == (n, k) self.search_c(n, swig_ptr(x), k, swig_ptr(D), swig_ptr(I), params) return D, I def replacement_search_and_reconstruct(self, x, k, *, params=None, D=None, I=None, R=None): """Find the k nearest neighbors of the set of vectors x in the index, and return an approximation of these vectors. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. k : int Number of nearest neighbors. params : SearchParameters Search parameters of the current search (overrides the class-level params) D : array_like, optional Distance array to store the result. I : array_like, optional Labels array to store the result. R : array_like, optional reconstruction array to store Returns ------- D : array_like Distances of the nearest neighbors, shape (n, k). When not enough results are found the label is set to +Inf or -Inf. I : array_like Labels of the nearest neighbors, shape (n, k). When not enough results are found, the label is set to -1 R : array_like Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d). """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') assert k > 0 if D is None: D = np.empty((n, k), dtype=np.float32) else: assert D.shape == (n, k) if I is None: I = np.empty((n, k), dtype=np.int64) else: assert I.shape == (n, k) if R is None: R = np.empty((n, k, d), dtype=np.float32) else: assert R.shape == (n, k, d) self.search_and_reconstruct_c( n, swig_ptr(x), k, swig_ptr(D), swig_ptr(I), swig_ptr(R), params ) return D, I, R def replacement_search_and_return_codes( self, x, k, *, include_listnos=False, params=None, D=None, I=None, codes=None): """Find the k nearest neighbors of the set of vectors x in the index, and return the codes stored for these vectors Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. k : int Number of nearest neighbors. params : SearchParameters Search parameters of the current search (overrides the class-level params) include_listnos : bool, optional whether to include the list ids in the first bytes of each code D : array_like, optional Distance array to store the result. I : array_like, optional Labels array to store the result. codes : array_like, optional codes array to store Returns ------- D : array_like Distances of the nearest neighbors, shape (n, k). When not enough results are found the label is set to +Inf or -Inf. I : array_like Labels of the nearest neighbors, shape (n, k). When not enough results are found, the label is set to -1 R : array_like Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d). """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') assert k > 0 if D is None: D = np.empty((n, k), dtype=np.float32) else: assert D.shape == (n, k) if I is None: I = np.empty((n, k), dtype=np.int64) else: assert I.shape == (n, k) code_size_1 = self.code_size if include_listnos: code_size_1 += self.coarse_code_size() if codes is None: codes = np.empty((n, k, code_size_1), dtype=np.uint8) else: assert codes.shape == (n, k, code_size_1) self.search_and_return_codes_c( n, swig_ptr(x), k, swig_ptr(D), swig_ptr(I), swig_ptr(codes), include_listnos, params ) return D, I, codes def replacement_remove_ids(self, x): """Remove some ids from the index. This is a O(ntotal) operation by default, so could be expensive. Parameters ---------- x : array_like or faiss.IDSelector Either an IDSelector that returns True for vectors to remove, or a list of ids to reomove (1D array of int64). When `x` is a list, it is wrapped into an IDSelector. Returns ------- n_remove: int number of vectors that were removed """ if isinstance(x, IDSelector): sel = x else: assert x.ndim == 1 index_ivf = try_extract_index_ivf(self) x = np.ascontiguousarray(x, dtype='int64') if index_ivf and index_ivf.direct_map.type == DirectMap.Hashtable: sel = IDSelectorArray(x.size, swig_ptr(x)) else: sel = IDSelectorBatch(x.size, swig_ptr(x)) return self.remove_ids_c(sel) def replacement_reconstruct(self, key, x=None): """Approximate reconstruction of one vector from the index. Parameters ---------- key : int Id of the vector to reconstruct x : array_like, optional pre-allocated array to store the results Returns ------- x : array_like reconstructed vector, size `self.d`, `dtype`=float32 """ if x is None: x = np.empty(self.d, dtype=np.float32) else: assert x.shape == (self.d, ) self.reconstruct_c(key, swig_ptr(x)) return x def replacement_reconstruct_batch(self, key, x=None): """Approximate reconstruction of several vectors from the index. Parameters ---------- key : array of ints Ids of the vectors to reconstruct x : array_like, optional pre-allocated array to store the results Returns ------- x : array_like reconstrcuted vectors, size `len(key), self.d` """ key = np.ascontiguousarray(key, dtype='int64') n, = key.shape if x is None: x = np.empty((n, self.d), dtype=np.float32) else: assert x.shape == (n, self.d) self.reconstruct_batch_c(n, swig_ptr(key), swig_ptr(x)) return x def replacement_reconstruct_n(self, n0=0, ni=-1, x=None): """Approximate reconstruction of vectors `n0` ... `n0 + ni - 1` from the index. Missing vectors trigger an exception. Parameters ---------- n0 : int Id of the first vector to reconstruct (default 0) ni : int Number of vectors to reconstruct (-1 = default = ntotal) x : array_like, optional pre-allocated array to store the results Returns ------- x : array_like Reconstructed vectors, size (`ni`, `self.d`), `dtype`=float32 """ if ni == -1: ni = self.ntotal - n0 if x is None: x = np.empty((ni, self.d), dtype=np.float32) else: assert x.shape == (ni, self.d) self.reconstruct_n_c(n0, ni, swig_ptr(x)) return x def replacement_update_vectors(self, keys, x): n = keys.size assert keys.shape == (n, ) assert x.shape == (n, self.d) x = np.ascontiguousarray(x, dtype='float32') keys = np.ascontiguousarray(keys, dtype='int64') self.update_vectors_c(n, swig_ptr(keys), swig_ptr(x)) # No support passed-in for output buffers def replacement_range_search(self, x, thresh, *, params=None): """Search vectors that are within a distance of the query vectors. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. thresh : float Threshold to select neighbors. All elements within this radius are returned, except for maximum inner product indexes, where the elements above the threshold are returned params : SearchParameters Search parameters of the current search (overrides the class-level params) Returns ------- lims: array_like Starting index of the results for each query vector, size n+1. D : array_like Distances of the nearest neighbors, shape `lims[n]`. The distances for query i are in `D[lims[i]:lims[i+1]]`. I : array_like Labels of nearest neighbors, shape `lims[n]`. The labels for query i are in `I[lims[i]:lims[i+1]]`. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') thresh = float(thresh) res = RangeSearchResult(n) self.range_search_c(n, swig_ptr(x), thresh, res, params) # get pointers and copy them lims = rev_swig_ptr(res.lims, n + 1).copy() nd = int(lims[-1]) D = rev_swig_ptr(res.distances, nd).copy() I = rev_swig_ptr(res.labels, nd).copy() return lims, D, I def replacement_search_preassigned(self, x, k, Iq, Dq, *, params=None, D=None, I=None): """Find the k nearest neighbors of the set of vectors x in an IVF index, with precalculated coarse quantization assignment. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. k : int Number of nearest neighbors. Dq : array_like, optional Distance array to the centroids, size (n, nprobe) Iq : array_like, optional Nearest centroids, size (n, nprobe) params : SearchParameters Search parameters of the current search (overrides the class-level params) D : array_like, optional Distance array to store the result. I : array_like, optional Labels array to store the results. Returns ------- D : array_like Distances of the nearest neighbors, shape (n, k). When not enough results are found the label is set to +Inf or -Inf. I : array_like Labels of the nearest neighbors, shape (n, k). When not enough results are found, the label is set to -1 """ n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d assert k > 0 if D is None: D = np.empty((n, k), dtype=np.float32) else: assert D.shape == (n, k) if I is None: I = np.empty((n, k), dtype=np.int64) else: assert I.shape == (n, k) Iq = np.ascontiguousarray(Iq, dtype='int64') assert params is None, "params not supported" assert Iq.shape == (n, self.nprobe) if Dq is not None: Dq = np.ascontiguousarray(Dq, dtype='float32') assert Dq.shape == Iq.shape self.search_preassigned_c( n, swig_ptr(x), k, swig_ptr(Iq), swig_ptr(Dq), swig_ptr(D), swig_ptr(I), False ) return D, I def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None): """Search vectors that are within a distance of the query vectors. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. thresh : float Threshold to select neighbors. All elements within this radius are returned, except for maximum inner product indexes, where the elements above the threshold are returned Iq : array_like, optional Nearest centroids, size (n, nprobe) Dq : array_like, optional Distance array to the centroids, size (n, nprobe) params : SearchParameters Search parameters of the current search (overrides the class-level params) Returns ------- lims: array_like Starting index of the results for each query vector, size n+1. D : array_like Distances of the nearest neighbors, shape `lims[n]`. The distances for query i are in `D[lims[i]:lims[i+1]]`. I : array_like Labels of nearest neighbors, shape `lims[n]`. The labels for query i are in `I[lims[i]:lims[i+1]]`. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') Iq = np.ascontiguousarray(Iq, dtype='int64') assert params is None, "params not supported" assert Iq.shape == (n, self.nprobe) if Dq is not None: Dq = np.ascontiguousarray(Dq, dtype='float32') assert Dq.shape == Iq.shape thresh = float(thresh) res = RangeSearchResult(n) self.range_search_preassigned_c( n, swig_ptr(x), thresh, swig_ptr(Iq), swig_ptr(Dq), res ) # get pointers and copy them lims = rev_swig_ptr(res.lims, n + 1).copy() nd = int(lims[-1]) D = rev_swig_ptr(res.distances, nd).copy() I = rev_swig_ptr(res.labels, nd).copy() return lims, D, I def replacement_sa_encode(self, x, codes=None): n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') if codes is None: codes = np.empty((n, self.sa_code_size()), dtype=np.uint8) else: assert codes.shape == (n, self.sa_code_size()) self.sa_encode_c(n, swig_ptr(x), swig_ptr(codes)) return codes def replacement_sa_decode(self, codes, x=None): n, cs = codes.shape assert cs == self.sa_code_size() codes = _check_dtype_uint8(codes) if x is None: x = np.empty((n, self.d), dtype=np.float32) else: assert x.shape == (n, self.d) self.sa_decode_c(n, swig_ptr(codes), swig_ptr(x)) return x def replacement_add_sa_codes(self, codes, ids=None): n, cs = codes.shape assert cs == self.sa_code_size() codes = _check_dtype_uint8(codes) if ids is not None: assert ids.shape == (n,) ids = swig_ptr(ids) self.add_sa_codes_c(n, swig_ptr(codes), ids) def replacement_permute_entries(self, perm): n, = perm.shape assert n == self.ntotal perm = np.ascontiguousarray(perm, dtype='int64') self.permute_entries_c(faiss.swig_ptr(perm)) replace_method(the_class, 'add', replacement_add) replace_method(the_class, 'add_with_ids', replacement_add_with_ids) replace_method(the_class, 'assign', replacement_assign) replace_method(the_class, 'train', replacement_train) replace_method(the_class, 'search', replacement_search) replace_method(the_class, 'remove_ids', replacement_remove_ids) replace_method(the_class, 'reconstruct', replacement_reconstruct) replace_method(the_class, 'reconstruct_batch', replacement_reconstruct_batch) replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n) replace_method(the_class, 'range_search', replacement_range_search) replace_method(the_class, 'update_vectors', replacement_update_vectors, ignore_missing=True) replace_method(the_class, 'search_and_reconstruct', replacement_search_and_reconstruct, ignore_missing=True) replace_method(the_class, 'search_and_return_codes', replacement_search_and_return_codes, ignore_missing=True) # these ones are IVF-specific replace_method(the_class, 'search_preassigned', replacement_search_preassigned, ignore_missing=True) replace_method(the_class, 'range_search_preassigned', replacement_range_search_preassigned, ignore_missing=True) replace_method(the_class, 'sa_encode', replacement_sa_encode) replace_method(the_class, 'sa_decode', replacement_sa_decode) replace_method(the_class, 'add_sa_codes', replacement_add_sa_codes, ignore_missing=True) replace_method(the_class, 'permute_entries', replacement_permute_entries, ignore_missing=True) # get/set state for pickle # the data is serialized to std::vector -> numpy array -> python bytes # so not very efficient for now. def index_getstate(self): return {"this": faiss.serialize_index(self).tobytes()} def index_setstate(self, st): index2 = faiss.deserialize_index(np.frombuffer(st["this"], dtype="uint8")) self.this = index2.this the_class.__getstate__ = index_getstate the_class.__setstate__ = index_setstate def handle_IndexBinary(the_class): def replacement_add(self, x): n, d = x.shape x = _check_dtype_uint8(x) assert d == self.code_size self.add_c(n, swig_ptr(x)) def replacement_add_with_ids(self, x, ids): n, d = x.shape x = _check_dtype_uint8(x) ids = np.ascontiguousarray(ids, dtype='int64') assert d == self.code_size assert ids.shape == (n, ), 'not same nb of vectors as ids' self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids)) def replacement_train(self, x): n, d = x.shape x = _check_dtype_uint8(x) assert d == self.code_size self.train_c(n, swig_ptr(x)) def replacement_reconstruct(self, key): x = np.empty(self.code_size, dtype=np.uint8) self.reconstruct_c(key, swig_ptr(x)) return x def replacement_reconstruct_n(self, n0=0, ni=-1, x=None): if ni == -1: ni = self.ntotal - n0 if x is None: x = np.empty((ni, self.code_size), dtype=np.uint8) else: assert x.shape == (ni, self.code_size) self.reconstruct_n_c(n0, ni, swig_ptr(x)) return x def replacement_search(self, x, k): x = _check_dtype_uint8(x) n, d = x.shape assert d == self.code_size assert k > 0 distances = np.empty((n, k), dtype=np.int32) labels = np.empty((n, k), dtype=np.int64) self.search_c(n, swig_ptr(x), k, swig_ptr(distances), swig_ptr(labels)) return distances, labels def replacement_search_preassigned(self, x, k, Iq, Dq): n, d = x.shape x = _check_dtype_uint8(x) assert d == self.code_size assert k > 0 D = np.empty((n, k), dtype=np.int32) I = np.empty((n, k), dtype=np.int64) Iq = np.ascontiguousarray(Iq, dtype='int64') assert Iq.shape == (n, self.nprobe) if Dq is not None: Dq = np.ascontiguousarray(Dq, dtype='int32') assert Dq.shape == Iq.shape self.search_preassigned_c( n, swig_ptr(x), k, swig_ptr(Iq), swig_ptr(Dq), swig_ptr(D), swig_ptr(I), False ) return D, I def replacement_range_search(self, x, thresh): n, d = x.shape x = _check_dtype_uint8(x) assert d == self.code_size res = RangeSearchResult(n) self.range_search_c(n, swig_ptr(x), thresh, res) # get pointers and copy them lims = rev_swig_ptr(res.lims, n + 1).copy() nd = int(lims[-1]) D = rev_swig_ptr(res.distances, nd).copy() I = rev_swig_ptr(res.labels, nd).copy() return lims, D, I def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None): n, d = x.shape x = _check_dtype_uint8(x) assert d == self.code_size Iq = np.ascontiguousarray(Iq, dtype='int64') assert params is None, "params not supported" assert Iq.shape == (n, self.nprobe) if Dq is not None: Dq = np.ascontiguousarray(Dq, dtype='int32') assert Dq.shape == Iq.shape thresh = int(thresh) res = RangeSearchResult(n) self.range_search_preassigned_c( n, swig_ptr(x), thresh, swig_ptr(Iq), swig_ptr(Dq), res ) # get pointers and copy them lims = rev_swig_ptr(res.lims, n + 1).copy() nd = int(lims[-1]) D = rev_swig_ptr(res.distances, nd).copy() I = rev_swig_ptr(res.labels, nd).copy() return lims, D, I def replacement_remove_ids(self, x): if isinstance(x, IDSelector): sel = x else: assert x.ndim == 1 x = np.ascontiguousarray(x, dtype='int64') sel = IDSelectorBatch(x.size, swig_ptr(x)) return self.remove_ids_c(sel) replace_method(the_class, 'add', replacement_add) replace_method(the_class, 'add_with_ids', replacement_add_with_ids) replace_method(the_class, 'train', replacement_train) replace_method(the_class, 'search', replacement_search) replace_method(the_class, 'range_search', replacement_range_search) replace_method(the_class, 'reconstruct', replacement_reconstruct) replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n) replace_method(the_class, 'remove_ids', replacement_remove_ids) replace_method(the_class, 'search_preassigned', replacement_search_preassigned, ignore_missing=True) replace_method(the_class, 'range_search_preassigned', replacement_range_search_preassigned, ignore_missing=True) def handle_VectorTransform(the_class): def apply_method(self, x): n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d_in y = np.empty((n, self.d_out), dtype=np.float32) self.apply_noalloc(n, swig_ptr(x), swig_ptr(y)) return y def replacement_reverse_transform(self, x): n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d_out y = np.empty((n, self.d_in), dtype=np.float32) self.reverse_transform_c(n, swig_ptr(x), swig_ptr(y)) return y def replacement_vt_train(self, x): n, d = x.shape x = np.ascontiguousarray(x, dtype='float32') assert d == self.d_in self.train_c(n, swig_ptr(x)) replace_method(the_class, 'train', replacement_vt_train) # apply is reserved in Pyton... the_class.apply_py = apply_method the_class.apply = apply_method replace_method(the_class, 'reverse_transform', replacement_reverse_transform) def handle_AutoTuneCriterion(the_class): def replacement_set_groundtruth(self, D, I): if D: assert I.shape == D.shape self.nq, self.gt_nnn = I.shape self.set_groundtruth_c( self.gt_nnn, swig_ptr(D) if D else None, swig_ptr(I)) def replacement_evaluate(self, D, I): assert I.shape == D.shape assert I.shape == (self.nq, self.nnn) return self.evaluate_c(swig_ptr(D), swig_ptr(I)) replace_method(the_class, 'set_groundtruth', replacement_set_groundtruth) replace_method(the_class, 'evaluate', replacement_evaluate) def handle_ParameterSpace(the_class): def replacement_explore(self, index, xq, crit): assert xq.shape == (crit.nq, index.d) xq = np.ascontiguousarray(xq, dtype='float32') ops = OperatingPoints() self.explore_c(index, crit.nq, swig_ptr(xq), crit, ops) return ops replace_method(the_class, 'explore', replacement_explore) def handle_MatrixStats(the_class): original_init = the_class.__init__ def replacement_init(self, m): assert len(m.shape) == 2 m = np.ascontiguousarray(m, dtype='float32') original_init(self, m.shape[0], m.shape[1], swig_ptr(m)) the_class.__init__ = replacement_init def handle_IOWriter(the_class): """ add a write_bytes method """ def write_bytes(self, b): return self(swig_ptr(b), 1, len(b)) the_class.write_bytes = write_bytes def handle_IOReader(the_class): """ add a read_bytes method """ def read_bytes(self, totsz): buf = bytearray(totsz) was_read = self(swig_ptr(buf), 1, len(buf)) return bytes(buf[:was_read]) the_class.read_bytes = read_bytes def handle_IndexRowwiseMinMax(the_class): def replacement_train_inplace(self, x): """Trains the index on a representative set of vectors inplace. The index must be trained before vectors can be added to it. This call WILL change the values in the input array, because of two scaling proceduces being performed inplace. Parameters ---------- x : array_like Query vectors, shape (n, d) where d is appropriate for the index. `dtype` must be float32. """ n, d = x.shape assert d == self.d x = np.ascontiguousarray(x, dtype='float32') self.train_inplace_c(n, swig_ptr(x)) replace_method(the_class, 'train_inplace', replacement_train_inplace) def handle_CodePacker(the_class): def replacement_pack_1(self, x, offset, block): assert x.shape == (self.code_size,) nblock, block_size = block.shape assert block_size == self.block_size assert 0 <= offset < block_size * self.nvec self.pack_1_c(swig_ptr(x), offset, faiss.swig_ptr(block)) def replacement_unpack_1(self, block, offset): nblock, block_size = block.shape assert block_size == self.block_size assert 0 <= offset < block_size * self.nvec x = np.zeros(self.code_size, dtype='uint8') self.unpack_1_c(faiss.swig_ptr(block), offset, swig_ptr(x)) return x replace_method(the_class, 'pack_1', replacement_pack_1) replace_method(the_class, 'unpack_1', replacement_unpack_1) ###################################################### # MapLong2Long interface ###################################################### def handle_MapLong2Long(the_class): def replacement_map_add(self, keys, vals): n, = keys.shape assert (n,) == vals.shape self.add_c(n, swig_ptr(keys), swig_ptr(vals)) def replacement_map_search_multiple(self, keys): n, = keys.shape vals = np.empty(n, dtype='int64') self.search_multiple_c(n, swig_ptr(keys), swig_ptr(vals)) return vals replace_method(the_class, 'add', replacement_map_add) replace_method(the_class, 'search_multiple', replacement_map_search_multiple) ###################################################### # SearchParameters and related interface ###################################################### def add_to_referenced_objects(self, ref): if not hasattr(self, 'referenced_objects'): self.referenced_objects = [ref] else: self.referenced_objects.append(ref) class RememberSwigOwnership: """ SWIG's seattr transfers ownership of SWIG wrapped objects to the class (btw this seems to contradict https://www.swig.org/Doc1.3/Python.html#Python_nn22 31.4.2) This interferes with how we manage ownership: with the referenced_objects table. Therefore, we reset the thisown field in this context manager. """ def __init__(self, obj): self.obj = obj def __enter__(self): if hasattr(self.obj, "thisown"): self.old_thisown = self.obj.thisown else: self.old_thisown = None def __exit__(self, *ignored): if self.old_thisown is not None: self.obj.thisown = self.old_thisown def handle_SearchParameters(the_class): """ this wrapper is to enable initializations of the form SearchParametersXX(a=3, b=SearchParamsYY) This also requires the enclosing class to keep a reference on the sub-object, since the C++ code assumes the object ownwership is handled externally. """ the_class.original_init = the_class.__init__ def replacement_init(self, **args): self.original_init() for k, v in args.items(): assert hasattr(self, k) with RememberSwigOwnership(v): setattr(self, k, v) if type(v) not in (int, float, bool, str): add_to_referenced_objects(self, v) the_class.__init__ = replacement_init def handle_IDSelectorSubset(the_class, class_owns, force_int64=True): the_class.original_init = the_class.__init__ def replacement_init(self, *args): if len(args) == 1: # assume it's an array subset, = args if force_int64: subset = np.ascontiguousarray(subset, dtype='int64') args = (len(subset), faiss.swig_ptr(subset)) if not class_owns: add_to_referenced_objects(self, subset) self.original_init(*args) the_class.__init__ = replacement_init def handle_CodeSet(the_class): def replacement_insert(self, codes, inserted=None): n, d = codes.shape assert d == self.d codes = np.ascontiguousarray(codes, dtype=np.uint8) if inserted is None: inserted = np.empty(n, dtype=bool) else: assert inserted.shape == (n, ) self.insert_c(n, swig_ptr(codes), swig_ptr(inserted)) return inserted replace_method(the_class, 'insert', replacement_insert)