# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import faiss def get_invlist(invlists, l): """ returns the inverted lists content as a pair of (list_ids, list_codes). The codes are reshaped to a proper size """ invlists = faiss.downcast_InvertedLists(invlists) ls = invlists.list_size(l) list_ids = np.zeros(ls, dtype='int64') ids = codes = None try: ids = invlists.get_ids(l) if ls > 0: faiss.memcpy(faiss.swig_ptr(list_ids), ids, list_ids.nbytes) codes = invlists.get_codes(l) if invlists.code_size != faiss.InvertedLists.INVALID_CODE_SIZE: list_codes = np.zeros((ls, invlists.code_size), dtype='uint8') else: # it's a BlockInvertedLists npb = invlists.n_per_block bs = invlists.block_size ls_round = (ls + npb - 1) // npb list_codes = np.zeros((ls_round, bs // npb, npb), dtype='uint8') if ls > 0: faiss.memcpy(faiss.swig_ptr(list_codes), codes, list_codes.nbytes) finally: if ids is not None: invlists.release_ids(l, ids) if codes is not None: invlists.release_codes(l, codes) return list_ids, list_codes def get_invlist_sizes(invlists): """ return the array of sizes of the inverted lists """ return np.array([ invlists.list_size(i) for i in range(invlists.nlist) ], dtype='int64') def print_object_fields(obj): """ list values all fields of an object known to SWIG """ for name in obj.__class__.__swig_getmethods__: print(f"{name} = {getattr(obj, name)}") def get_pq_centroids(pq): """ return the PQ centroids as an array """ cen = faiss.vector_to_array(pq.centroids) return cen.reshape(pq.M, pq.ksub, pq.dsub) def get_LinearTransform_matrix(pca): """ extract matrix + bias from the PCA object works for any linear transform (OPQ, random rotation, etc.) """ b = faiss.vector_to_array(pca.b) A = faiss.vector_to_array(pca.A).reshape(pca.d_out, pca.d_in) return A, b def make_LinearTransform_matrix(A, b=None): """ make a linear transform from a matrix and a bias term (optional)""" d_out, d_in = A.shape if b is not None: assert b.shape == (d_out, ) lt = faiss.LinearTransform(d_in, d_out, b is not None) faiss.copy_array_to_vector(A.ravel(), lt.A) if b is not None: faiss.copy_array_to_vector(b, lt.b) lt.is_trained = True lt.set_is_orthonormal() return lt def get_additive_quantizer_codebooks(aq): """ return to codebooks of an additive quantizer """ codebooks = faiss.vector_to_array(aq.codebooks).reshape(-1, aq.d) co = faiss.vector_to_array(aq.codebook_offsets) return [ codebooks[co[i]:co[i + 1]] for i in range(aq.M) ] def get_flat_data(index): """ copy and return the data matrix in an IndexFlat """ xb = faiss.vector_to_array(index.codes).view("float32") return xb.reshape(index.ntotal, index.d) def get_NSG_neighbors(nsg): """ get the neighbor list for the vectors stored in the NSG structure, as a N-by-K matrix of indices """ graph = nsg.get_final_graph() neighbors = np.zeros((graph.N, graph.K), dtype='int32') faiss.memcpy( faiss.swig_ptr(neighbors), graph.data, neighbors.nbytes ) return neighbors