DreamStream-1 commited on
Commit
4ca2b05
·
verified ·
1 Parent(s): 449eb6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -60,24 +60,24 @@ def load_data():
60
  except FileNotFoundError:
61
  raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
62
 
63
- # Encode diseases in a dictionary
64
  disease_dict = {
65
  'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
66
- 'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
67
  'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
68
- 'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
69
- 'Hepatitis A': 19, 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
70
- 'Alcoholic hepatitis': 24, 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
71
- 'Heart attack': 28, 'Varicose veins': 29, 'Hypothyroidism': 30, 'Hyperthyroidism': 31,
72
- 'Hypoglycemia': 32, 'Osteoarthritis': 33, 'Arthritis': 34,
73
- '(vertigo) Paroxysmal Positional Vertigo': 35, 'Acne': 36, 'Urinary tract infection': 37,
74
- 'Psoriasis': 38, 'Impetigo': 39
75
  }
76
 
77
  # Replace prognosis values with numerical categories
78
  df.replace({'prognosis': disease_dict}, inplace=True)
79
 
80
- # Print unique values in prognosis for debugging
81
  print("Unique values in prognosis after mapping:", df['prognosis'].unique())
82
 
83
  # Ensure prognosis is purely numerical after mapping
@@ -85,7 +85,6 @@ def load_data():
85
  raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")
86
 
87
  df['prognosis'] = df['prognosis'].astype(int) # Convert to integer
88
-
89
  df = df.infer_objects() # Remove 'copy' argument
90
 
91
  # Similar process for the testing data
@@ -111,7 +110,7 @@ y_test = tr['prognosis']
111
 
112
  # Encode the target variable with LabelEncoder if still in string format
113
  le = LabelEncoder()
114
- y_encoded = le.fit_transform(y) # We assume all labels are present and valid here
115
 
116
  def train_models():
117
  models = {
 
60
  except FileNotFoundError:
61
  raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
62
 
63
+ # Encode diseases
64
  disease_dict = {
65
  'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
66
+ 'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
67
  'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
68
+ 'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
69
+ 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
70
+ 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemmorhoids(piles)': 28,
71
+ 'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
72
+ 'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
73
+ '(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
74
+ 'Psoriasis': 39, 'Impetigo': 40
75
  }
76
 
77
  # Replace prognosis values with numerical categories
78
  df.replace({'prognosis': disease_dict}, inplace=True)
79
 
80
+ # Check unique values in prognosis for debugging
81
  print("Unique values in prognosis after mapping:", df['prognosis'].unique())
82
 
83
  # Ensure prognosis is purely numerical after mapping
 
85
  raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")
86
 
87
  df['prognosis'] = df['prognosis'].astype(int) # Convert to integer
 
88
  df = df.infer_objects() # Remove 'copy' argument
89
 
90
  # Similar process for the testing data
 
110
 
111
  # Encode the target variable with LabelEncoder if still in string format
112
  le = LabelEncoder()
113
+ y_encoded = le.fit_transform(y) # Encode string labels into integers
114
 
115
  def train_models():
116
  models = {