Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import nltk
|
4 |
import numpy as np
|
|
|
|
|
5 |
import json
|
6 |
import pickle
|
7 |
from nltk.tokenize import word_tokenize
|
@@ -10,16 +12,10 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
10 |
import googlemaps
|
11 |
import folium
|
12 |
import torch
|
13 |
-
import pandas as pd
|
14 |
-
from sklearn.tree import DecisionTreeClassifier
|
15 |
-
from sklearn.ensemble import RandomForestClassifier
|
16 |
-
from sklearn.naive_bayes import GaussianNB
|
17 |
-
from sklearn.metrics import accuracy_score
|
18 |
-
from sklearn.preprocessing import LabelEncoder
|
19 |
|
20 |
# Suppress TensorFlow warnings
|
21 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
22 |
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
23 |
|
24 |
# Download necessary NLTK resources
|
25 |
nltk.download("punkt")
|
@@ -32,18 +28,14 @@ with open("intents.json") as file:
|
|
32 |
with open("data.pickle", "rb") as f:
|
33 |
words, labels, training, output = pickle.load(f)
|
34 |
|
35 |
-
# Build the chatbot model
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Build and train the chatbot model
|
45 |
-
chatbot_model = build_chatbot_model(len(training[0]), len(output[0]))
|
46 |
-
chatbot_model.fit(training, output, epochs=100) # Ensure training data is prepared accordingly
|
47 |
|
48 |
# Hugging Face sentiment and emotion models
|
49 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
@@ -54,148 +46,23 @@ model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/e
|
|
54 |
# Google Maps API Client
|
55 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
56 |
|
57 |
-
# Disease
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
'Peptic ulcer disease': 5,
|
73 |
-
'AIDS': 6,
|
74 |
-
'Diabetes': 7,
|
75 |
-
'Gastroenteritis': 8,
|
76 |
-
'Bronchial Asthma': 9,
|
77 |
-
'Hypertension': 10,
|
78 |
-
'Migraine': 11,
|
79 |
-
'Cervical spondylosis': 12,
|
80 |
-
'Paralysis (brain hemorrhage)': 13,
|
81 |
-
'Jaundice': 14,
|
82 |
-
'Malaria': 15,
|
83 |
-
'Chicken pox': 16,
|
84 |
-
'Dengue': 17,
|
85 |
-
'Typhoid': 18,
|
86 |
-
'Hepatitis A': 19,
|
87 |
-
'Hepatitis B': 20,
|
88 |
-
'Hepatitis C': 21,
|
89 |
-
'Hepatitis D': 22,
|
90 |
-
'Hepatitis E': 23,
|
91 |
-
'Alcoholic hepatitis': 24,
|
92 |
-
'Tuberculosis': 25,
|
93 |
-
'Common Cold': 26,
|
94 |
-
'Pneumonia': 27,
|
95 |
-
'Dimorphic hemorrhoids (piles)': 28,
|
96 |
-
'Heart attack': 29,
|
97 |
-
'Varicose veins': 30,
|
98 |
-
'Hypothyroidism': 31,
|
99 |
-
'Hyperthyroidism': 32,
|
100 |
-
'Hypoglycemia': 33,
|
101 |
-
'Osteoarthritis': 34,
|
102 |
-
'Arthritis': 35,
|
103 |
-
'(vertigo) Paroxysmal Positional Vertigo': 36,
|
104 |
-
'Acne': 37,
|
105 |
-
'Urinary tract infection': 38,
|
106 |
-
'Psoriasis': 39,
|
107 |
-
'Impetigo': 40
|
108 |
-
}
|
109 |
-
|
110 |
-
# Replace prognosis values with numerical categories
|
111 |
-
df.replace({'prognosis': disease_dict}, inplace=True)
|
112 |
-
|
113 |
-
# Check unique values in prognosis for debugging
|
114 |
-
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
|
115 |
-
|
116 |
-
# Ensure prognosis is purely numerical after mapping
|
117 |
-
if df['prognosis'].dtype == 'object':
|
118 |
-
raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")
|
119 |
-
|
120 |
-
df['prognosis'] = df['prognosis'].astype(int)
|
121 |
-
df = df.infer_objects()
|
122 |
-
|
123 |
-
# Similar process for the testing data
|
124 |
-
tr.replace({'prognosis': disease_dict}, inplace=True)
|
125 |
-
print("Unique values in prognosis for testing data after mapping:", tr['prognosis'].unique())
|
126 |
-
|
127 |
-
if tr['prognosis'].dtype == 'object':
|
128 |
-
raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")
|
129 |
-
|
130 |
-
tr['prognosis'] = tr['prognosis'].astype(int)
|
131 |
-
tr = tr.infer_objects()
|
132 |
-
|
133 |
-
return df, tr, disease_dict
|
134 |
-
|
135 |
-
df, tr, disease_dict = load_data()
|
136 |
-
l1 = list(df.columns[:-1]) # All columns except prognosis
|
137 |
-
X = df[l1]
|
138 |
-
y = df['prognosis']
|
139 |
-
X_test = tr[l1]
|
140 |
-
y_test = tr['prognosis']
|
141 |
-
|
142 |
-
# Encode the target variable with LabelEncoder if still in string format
|
143 |
-
le = LabelEncoder()
|
144 |
-
y_encoded = le.fit_transform(y)
|
145 |
-
|
146 |
-
def train_models(X, y_encoded, X_test, y_test):
|
147 |
-
models = {
|
148 |
-
"Decision Tree": DecisionTreeClassifier(),
|
149 |
-
"Random Forest": RandomForestClassifier(),
|
150 |
-
"Naive Bayes": GaussianNB()
|
151 |
-
}
|
152 |
-
trained_models = {}
|
153 |
-
for model_name, model_obj in models.items():
|
154 |
-
try:
|
155 |
-
model_obj.fit(X, y_encoded) # Fit the model
|
156 |
-
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
157 |
-
trained_models[model_name] = (model_obj, acc)
|
158 |
-
except Exception as e:
|
159 |
-
print(f"Failed to train {model_name}: {e}")
|
160 |
-
return trained_models
|
161 |
-
|
162 |
-
trained_models = train_models(X, y_encoded, X_test, y_test)
|
163 |
-
|
164 |
-
def predict_disease(model, symptoms):
|
165 |
-
input_test = np.zeros(len(l1))
|
166 |
-
for symptom in symptoms:
|
167 |
-
if symptom in l1:
|
168 |
-
input_test[l1.index(symptom)] = 1
|
169 |
-
prediction = model.predict([input_test])[0]
|
170 |
-
confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
|
171 |
-
return {
|
172 |
-
"disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
|
173 |
-
"confidence": confidence
|
174 |
-
}
|
175 |
-
|
176 |
-
def disease_prediction_interface(symptoms):
|
177 |
-
symptoms_selected = [s for s in symptoms if s != "None"]
|
178 |
-
|
179 |
-
if len(symptoms_selected) < 3:
|
180 |
-
return ["Please select at least 3 symptoms for accurate prediction."]
|
181 |
-
|
182 |
-
results = []
|
183 |
-
for model_name, (model, acc) in trained_models.items():
|
184 |
-
prediction_info = predict_disease(model, symptoms_selected)
|
185 |
-
predicted_disease = prediction_info["disease"]
|
186 |
-
confidence_score = prediction_info["confidence"]
|
187 |
-
|
188 |
-
result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
|
189 |
-
if confidence_score is not None:
|
190 |
-
result += f" (Confidence: {confidence_score:.2f})"
|
191 |
-
result += f" (Accuracy: {acc * 100:.2f}%)"
|
192 |
-
|
193 |
-
results.append(result)
|
194 |
-
|
195 |
-
return results
|
196 |
-
|
197 |
-
# Helper Functions (for chatbot)
|
198 |
def bag_of_words(s, words):
|
|
|
199 |
bag = [0] * len(words)
|
200 |
s_words = word_tokenize(s)
|
201 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
@@ -206,17 +73,23 @@ def bag_of_words(s, words):
|
|
206 |
return np.array(bag)
|
207 |
|
208 |
def generate_chatbot_response(message, history):
|
|
|
209 |
history = history or []
|
210 |
try:
|
211 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
212 |
tag = labels[np.argmax(result)]
|
213 |
-
response =
|
|
|
|
|
|
|
|
|
214 |
except Exception as e:
|
215 |
response = f"Error: {e}"
|
216 |
history.append((message, response))
|
217 |
return history, response
|
218 |
|
219 |
def analyze_sentiment(user_input):
|
|
|
220 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
221 |
with torch.no_grad():
|
222 |
outputs = model_sentiment(**inputs)
|
@@ -225,6 +98,7 @@ def analyze_sentiment(user_input):
|
|
225 |
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
226 |
|
227 |
def detect_emotion(user_input):
|
|
|
228 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
229 |
result = pipe(user_input)
|
230 |
emotion = result[0]["label"].lower().strip()
|
@@ -238,6 +112,17 @@ def detect_emotion(user_input):
|
|
238 |
}
|
239 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
def generate_suggestions(emotion):
|
242 |
"""Return relevant suggestions based on detected emotions."""
|
243 |
emotion_key = emotion.lower()
|
@@ -271,10 +156,12 @@ def generate_suggestions(emotion):
|
|
271 |
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
272 |
],
|
273 |
}
|
274 |
-
|
|
|
275 |
formatted_suggestions = [
|
276 |
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
277 |
]
|
|
|
278 |
return formatted_suggestions
|
279 |
|
280 |
def get_health_professionals_and_map(location, query):
|
@@ -290,100 +177,133 @@ def get_health_professionals_and_map(location, query):
|
|
290 |
professionals = []
|
291 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
292 |
for place in places_result:
|
|
|
293 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
294 |
folium.Marker(
|
295 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
296 |
popup=f"{place['name']}"
|
297 |
).add_to(map_)
|
298 |
return professionals, map_._repr_html_()
|
299 |
-
|
|
|
300 |
except Exception as e:
|
301 |
-
|
302 |
-
return [], ""
|
303 |
|
304 |
# Main Application Logic
|
305 |
-
def app_function(user_input, location, query,
|
306 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
307 |
sentiment_result = analyze_sentiment(user_input)
|
308 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
309 |
suggestions = generate_suggestions(cleaned_emotion)
|
310 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
return "Please enter the patient's name."
|
327 |
|
328 |
-
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
results = []
|
334 |
-
for model_name, (model, acc) in trained_models.items():
|
335 |
-
prediction = predict_disease(model, symptoms_selected)
|
336 |
-
result = f"{model_name} Prediction: Predicted Disease: **{prediction}**"
|
337 |
-
result += f" (Accuracy: {acc * 100:.2f}%)"
|
338 |
-
results.append(result)
|
339 |
|
340 |
-
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
location = gr.Textbox(label="Your Current Location Here", placeholder="Enter location...")
|
350 |
-
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="What are you looking for...")
|
351 |
-
|
352 |
-
with gr.Row():
|
353 |
-
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
|
354 |
-
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
|
355 |
-
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
|
356 |
-
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
|
357 |
-
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
|
358 |
-
|
359 |
-
submit_chatbot = gr.Button(value="Submit", variant="primary")
|
360 |
-
chatbot = gr.Chatbot(label="Chat History")
|
361 |
-
sentiment = gr.Textbox(label="Detected Sentiment")
|
362 |
-
emotion = gr.Textbox(label="Detected Emotion")
|
363 |
-
|
364 |
-
suggestions = gr.DataFrame(headers=["Title", "Link"])
|
365 |
-
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
|
366 |
-
map_html = gr.HTML(label="Interactive Map")
|
367 |
-
disease_predictions = gr.Textbox(label="Disease Predictions")
|
368 |
-
|
369 |
-
submit_chatbot.click(
|
370 |
-
app_function,
|
371 |
-
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
|
372 |
-
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
|
373 |
-
)
|
374 |
-
|
375 |
-
with gr.Tab("Disease Prediction"):
|
376 |
-
name_box = gr.Textbox(label="Name of Patient", placeholder="Enter patient's name")
|
377 |
-
symptom_choices = [gr.Dropdown(choices=["None"] + l1, label=f"Symptom {i+1}") for i in range(5)]
|
378 |
-
submit_disease = gr.Button(value="Submit", variant="primary")
|
379 |
-
|
380 |
-
disease_output = gr.Textbox(label="Predicted Disease", placeholder="Prediction will appear here")
|
381 |
-
|
382 |
-
submit_disease.click(
|
383 |
-
disease_app_function,
|
384 |
-
inputs=[name_box] + symptom_choices,
|
385 |
-
outputs=disease_output
|
386 |
-
)
|
387 |
-
|
388 |
-
# Launch the Gradio application
|
389 |
-
app.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import nltk
|
4 |
import numpy as np
|
5 |
+
import tflearn
|
6 |
+
import random
|
7 |
import json
|
8 |
import pickle
|
9 |
from nltk.tokenize import word_tokenize
|
|
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Suppress TensorFlow warnings
|
17 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
18 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
19 |
|
20 |
# Download necessary NLTK resources
|
21 |
nltk.download("punkt")
|
|
|
28 |
with open("data.pickle", "rb") as f:
|
29 |
words, labels, training, output = pickle.load(f)
|
30 |
|
31 |
+
# Build the chatbot model
|
32 |
+
net = tflearn.input_data(shape=[None, len(training[0])])
|
33 |
+
net = tflearn.fully_connected(net, 8)
|
34 |
+
net = tflearn.fully_connected(net, 8)
|
35 |
+
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
36 |
+
net = tflearn.regression(net)
|
37 |
+
chatbot_model = tflearn.DNN(net)
|
38 |
+
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Hugging Face sentiment and emotion models
|
41 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
46 |
# Google Maps API Client
|
47 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
48 |
|
49 |
+
# Disease dictionary to map disease names to numerical values
|
50 |
+
disease_dict = {
|
51 |
+
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
52 |
+
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
|
53 |
+
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
|
54 |
+
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
|
55 |
+
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
|
56 |
+
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
|
57 |
+
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
|
58 |
+
'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
|
59 |
+
'(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
|
60 |
+
'Psoriasis': 39, 'Impetigo': 40
|
61 |
+
}
|
62 |
+
|
63 |
+
# Helper Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def bag_of_words(s, words):
|
65 |
+
"""Convert user input to bag-of-words vector."""
|
66 |
bag = [0] * len(words)
|
67 |
s_words = word_tokenize(s)
|
68 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
|
|
73 |
return np.array(bag)
|
74 |
|
75 |
def generate_chatbot_response(message, history):
|
76 |
+
"""Generate chatbot response and maintain conversation history."""
|
77 |
history = history or []
|
78 |
try:
|
79 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
80 |
tag = labels[np.argmax(result)]
|
81 |
+
response = "I'm sorry, I didn't understand that. 🤔"
|
82 |
+
for intent in intents_data["intents"]:
|
83 |
+
if intent["tag"] == tag:
|
84 |
+
response = random.choice(intent["responses"])
|
85 |
+
break
|
86 |
except Exception as e:
|
87 |
response = f"Error: {e}"
|
88 |
history.append((message, response))
|
89 |
return history, response
|
90 |
|
91 |
def analyze_sentiment(user_input):
|
92 |
+
"""Analyze sentiment and map to emojis."""
|
93 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
94 |
with torch.no_grad():
|
95 |
outputs = model_sentiment(**inputs)
|
|
|
98 |
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
99 |
|
100 |
def detect_emotion(user_input):
|
101 |
+
"""Detect emotions based on input."""
|
102 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
103 |
result = pipe(user_input)
|
104 |
emotion = result[0]["label"].lower().strip()
|
|
|
112 |
}
|
113 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
114 |
|
115 |
+
def disease_prediction(user_input):
|
116 |
+
"""Predict disease based on input symptoms."""
|
117 |
+
# Here, we simulate disease prediction logic
|
118 |
+
symptoms = user_input.lower().split()
|
119 |
+
disease_probabilities = [random.random() for _ in disease_dict] # Placeholder for prediction model
|
120 |
+
|
121 |
+
# Select the highest probability (for demonstration)
|
122 |
+
disease_index = np.argmax(disease_probabilities)
|
123 |
+
disease_name = list(disease_dict.keys())[disease_index]
|
124 |
+
return disease_name
|
125 |
+
|
126 |
def generate_suggestions(emotion):
|
127 |
"""Return relevant suggestions based on detected emotions."""
|
128 |
emotion_key = emotion.lower()
|
|
|
156 |
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
157 |
],
|
158 |
}
|
159 |
+
|
160 |
+
# Format the output to include HTML anchor tags
|
161 |
formatted_suggestions = [
|
162 |
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
163 |
]
|
164 |
+
|
165 |
return formatted_suggestions
|
166 |
|
167 |
def get_health_professionals_and_map(location, query):
|
|
|
177 |
professionals = []
|
178 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
179 |
for place in places_result:
|
180 |
+
# Use a list of values to append each professional
|
181 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
182 |
folium.Marker(
|
183 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
184 |
popup=f"{place['name']}"
|
185 |
).add_to(map_)
|
186 |
return professionals, map_._repr_html_()
|
187 |
+
|
188 |
+
return [], "" # Return empty list if no professionals found
|
189 |
except Exception as e:
|
190 |
+
return [], "" # Return empty list on exception
|
|
|
191 |
|
192 |
# Main Application Logic
|
193 |
+
def app_function(user_input, location, query, history):
|
194 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
195 |
sentiment_result = analyze_sentiment(user_input)
|
196 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
197 |
suggestions = generate_suggestions(cleaned_emotion)
|
198 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
199 |
+
disease_result = disease_prediction(user_input) # Get disease prediction
|
200 |
+
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html, disease_result
|
201 |
+
|
202 |
+
# CSS Styling
|
203 |
+
custom_css = """
|
204 |
+
body {
|
205 |
+
font-family: 'Roboto', sans-serif;
|
206 |
+
background-color: #3c6487; /* Set the background color */
|
207 |
+
color: white;
|
208 |
+
}
|
209 |
+
|
210 |
+
h1 {
|
211 |
+
background: #ffffff;
|
212 |
+
color: #000000;
|
213 |
+
border-radius: 8px;
|
214 |
+
padding: 10px;
|
215 |
+
font-weight: bold;
|
216 |
+
text-align: center;
|
217 |
+
font-size: 2.5rem;
|
218 |
+
}
|
219 |
+
|
220 |
+
textarea, input {
|
221 |
+
background: transparent;
|
222 |
+
color: black;
|
223 |
+
border: 2px solid orange;
|
224 |
+
padding: 8px;
|
225 |
+
font-size: 1rem;
|
226 |
+
caret-color: black;
|
227 |
+
outline: none;
|
228 |
+
border-radius: 8px;
|
229 |
+
}
|
230 |
+
|
231 |
+
textarea:focus, input:focus {
|
232 |
+
background: transparent;
|
233 |
+
color: black;
|
234 |
+
border: 2px solid orange;
|
235 |
+
outline: none;
|
236 |
+
}
|
237 |
+
|
238 |
+
textarea:hover, input:hover {
|
239 |
+
background: transparent;
|
240 |
+
color: black;
|
241 |
+
border: 2px solid orange;
|
242 |
+
}
|
243 |
+
|
244 |
+
.df-container {
|
245 |
+
background: white;
|
246 |
+
color: black;
|
247 |
+
border: 2px solid orange;
|
248 |
+
border-radius: 10px;
|
249 |
+
padding: 10px;
|
250 |
+
font-size: 14px;
|
251 |
+
max-height: 400px;
|
252 |
+
height: auto;
|
253 |
+
overflow-y: auto;
|
254 |
+
}
|
255 |
+
|
256 |
+
#suggestions-title {
|
257 |
+
text-align: center !important; /* Ensure the centering is applied */
|
258 |
+
font-weight: bold !important; /* Ensure bold is applied */
|
259 |
+
color: white !important; /* Ensure color is applied */
|
260 |
+
font-size: 4.2rem !important; /* Ensure font size is applied */
|
261 |
+
margin-bottom: 20px !important; /* Ensure margin is applied */
|
262 |
+
}
|
263 |
+
|
264 |
+
/* Style for the submit button */
|
265 |
+
.gr-button {
|
266 |
+
background-color: #ae1c93; /* Set the background color to #ae1c93 */
|
267 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
268 |
+
transition: background-color 0.3s ease;
|
269 |
+
}
|
270 |
+
|
271 |
+
.gr-button:hover {
|
272 |
+
background-color: #8f167b;
|
273 |
+
}
|
274 |
+
|
275 |
+
.gr-button:active {
|
276 |
+
background-color: #7f156b;
|
277 |
+
}
|
278 |
+
"""
|
279 |
+
|
280 |
+
# Gradio Application
|
281 |
+
with gr.Blocks(css=custom_css) as app:
|
282 |
+
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
283 |
+
with gr.Row():
|
284 |
+
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
285 |
+
location = gr.Textbox(label="Please Enter Your Current Location Here")
|
286 |
+
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
|
287 |
+
|
288 |
+
submit = gr.Button(value="Submit", variant="primary")
|
289 |
|
290 |
+
chatbot = gr.Chatbot(label="Chat History")
|
291 |
+
sentiment = gr.Textbox(label="Detected Sentiment")
|
292 |
+
emotion = gr.Textbox(label="Detected Emotion")
|
|
|
293 |
|
294 |
+
# Adding Suggestions Title with Styled Markdown (Centered and Bold)
|
295 |
+
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
296 |
|
297 |
+
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Table for suggestions
|
298 |
+
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Changed to DataFrame
|
299 |
+
map_html = gr.HTML(label="Interactive Map")
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
disease = gr.Textbox(label="Predicted Disease") # Display disease prediction
|
302 |
|
303 |
+
submit.click(
|
304 |
+
app_function,
|
305 |
+
inputs=[user_input, location, query, chatbot],
|
306 |
+
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease],
|
307 |
+
)
|
308 |
+
|
309 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|