DreamStream-1 commited on
Commit
78d8231
·
verified ·
1 Parent(s): 6ac398f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -11,8 +11,7 @@ import googlemaps
11
  import folium
12
  import torch
13
  import pandas as pd
14
- from tensorflow import keras
15
- from tensorflow.keras import layers
16
  from sklearn.ensemble import RandomForestClassifier
17
  from sklearn.naive_bayes import GaussianNB
18
  from sklearn.metrics import accuracy_score
@@ -38,15 +37,13 @@ def build_chatbot_model(input_shape, output_shape):
38
  model = keras.Sequential()
39
  model.add(layers.Input(shape=(input_shape,)))
40
  model.add(layers.Dense(8, activation='relu'))
41
- model.add(layers.Dense(8, activation='relu'))
42
- model.add(layers.Dense(output_shape, activation='softmax'))
43
-
44
  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
45
  return model
46
 
47
  # Build and train the chatbot model
48
  chatbot_model = build_chatbot_model(len(training[0]), len(output[0]))
49
- chatbot_model.fit(training, output, epochs=100) # Adjust epochs and model fitting parameters as necessary
50
 
51
  # Hugging Face sentiment and emotion models
52
  tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
@@ -113,7 +110,7 @@ def load_data():
113
  # Replace prognosis values with numerical categories
114
  df.replace({'prognosis': disease_dict}, inplace=True)
115
 
116
- # Check unique values in prognosis after mapping
117
  print("Unique values in prognosis after mapping:", df['prognosis'].unique())
118
 
119
  # Ensure prognosis is purely numerical after mapping
@@ -314,11 +311,11 @@ def app_function(user_input, location, query, symptoms, history):
314
  disease_results = disease_prediction_interface(symptoms)
315
 
316
  return (
317
- chatbot_history,
318
- sentiment_result,
319
- emotion_result,
320
- suggestions,
321
- professionals,
322
  map_html,
323
  disease_results
324
  )
 
11
  import folium
12
  import torch
13
  import pandas as pd
14
+ from sklearn.tree import DecisionTreeClassifier
 
15
  from sklearn.ensemble import RandomForestClassifier
16
  from sklearn.naive_bayes import GaussianNB
17
  from sklearn.metrics import accuracy_score
 
37
  model = keras.Sequential()
38
  model.add(layers.Input(shape=(input_shape,)))
39
  model.add(layers.Dense(8, activation='relu'))
40
+ model.add(layers.Dense(len(output_shape), activation='softmax'))
 
 
41
  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
42
  return model
43
 
44
  # Build and train the chatbot model
45
  chatbot_model = build_chatbot_model(len(training[0]), len(output[0]))
46
+ chatbot_model.fit(training, output, epochs=100) # Ensure training data is prepared accordingly
47
 
48
  # Hugging Face sentiment and emotion models
49
  tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
 
110
  # Replace prognosis values with numerical categories
111
  df.replace({'prognosis': disease_dict}, inplace=True)
112
 
113
+ # Check unique values in prognosis for debugging
114
  print("Unique values in prognosis after mapping:", df['prognosis'].unique())
115
 
116
  # Ensure prognosis is purely numerical after mapping
 
311
  disease_results = disease_prediction_interface(symptoms)
312
 
313
  return (
314
+ chatbot_history,
315
+ sentiment_result,
316
+ emotion_result,
317
+ suggestions,
318
+ professionals,
319
  map_html,
320
  disease_results
321
  )