Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,11 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import torch
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Suppress TensorFlow warnings
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
@@ -47,7 +52,7 @@ model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/e
|
|
47 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
48 |
|
49 |
# Disease dictionary to map disease names to numerical values
|
50 |
-
disease_dict = {
|
51 |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
52 |
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
|
53 |
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
|
@@ -60,7 +65,7 @@ disease_dict = {
|
|
60 |
'Psoriasis': 39, 'Impetigo': 40
|
61 |
}
|
62 |
|
63 |
-
# Helper Functions
|
64 |
def bag_of_words(s, words):
|
65 |
"""Convert user input to bag-of-words vector."""
|
66 |
bag = [0] * len(words)
|
@@ -112,17 +117,6 @@ def detect_emotion(user_input):
|
|
112 |
}
|
113 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
114 |
|
115 |
-
def disease_prediction(user_input):
|
116 |
-
"""Predict disease based on input symptoms."""
|
117 |
-
# Here, we simulate disease prediction logic
|
118 |
-
symptoms = user_input.lower().split()
|
119 |
-
disease_probabilities = [random.random() for _ in disease_dict] # Placeholder for prediction model
|
120 |
-
|
121 |
-
# Select the highest probability (for demonstration)
|
122 |
-
disease_index = np.argmax(disease_probabilities)
|
123 |
-
disease_name = list(disease_dict.keys())[disease_index]
|
124 |
-
return disease_name
|
125 |
-
|
126 |
def generate_suggestions(emotion):
|
127 |
"""Return relevant suggestions based on detected emotions."""
|
128 |
emotion_key = emotion.lower()
|
@@ -177,7 +171,6 @@ def get_health_professionals_and_map(location, query):
|
|
177 |
professionals = []
|
178 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
179 |
for place in places_result:
|
180 |
-
# Use a list of values to append each professional
|
181 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
182 |
folium.Marker(
|
183 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
@@ -189,17 +182,79 @@ def get_health_professionals_and_map(location, query):
|
|
189 |
except Exception as e:
|
190 |
return [], "" # Return empty list on exception
|
191 |
|
192 |
-
# Main Application Logic
|
193 |
-
def
|
194 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
195 |
sentiment_result = analyze_sentiment(user_input)
|
196 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
197 |
suggestions = generate_suggestions(cleaned_emotion)
|
198 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
# CSS Styling
|
203 |
custom_css = """
|
204 |
body {
|
205 |
font-family: 'Roboto', sans-serif;
|
@@ -280,30 +335,47 @@ textarea:hover, input:hover {
|
|
280 |
# Gradio Application
|
281 |
with gr.Blocks(css=custom_css) as app:
|
282 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
283 |
-
with gr.Row():
|
284 |
-
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
285 |
-
location = gr.Textbox(label="Please Enter Your Current Location Here")
|
286 |
-
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
|
287 |
-
|
288 |
-
submit = gr.Button(value="Submit", variant="primary")
|
289 |
-
|
290 |
-
chatbot = gr.Chatbot(label="Chat History")
|
291 |
-
sentiment = gr.Textbox(label="Detected Sentiment")
|
292 |
-
emotion = gr.Textbox(label="Detected Emotion")
|
293 |
-
|
294 |
-
# Adding Suggestions Title with Styled Markdown (Centered and Bold)
|
295 |
-
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
296 |
-
|
297 |
-
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Table for suggestions
|
298 |
-
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Changed to DataFrame
|
299 |
-
map_html = gr.HTML(label="Interactive Map")
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import torch
|
15 |
+
import pandas as pd
|
16 |
+
from sklearn.tree import DecisionTreeClassifier
|
17 |
+
from sklearn.ensemble import RandomForestClassifier
|
18 |
+
from sklearn.naive_bayes import GaussianNB
|
19 |
+
from sklearn.metrics import accuracy_score
|
20 |
|
21 |
# Suppress TensorFlow warnings
|
22 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
|
52 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
53 |
|
54 |
# Disease dictionary to map disease names to numerical values
|
55 |
+
disease_dict = {
|
56 |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
57 |
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
|
58 |
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
|
|
|
65 |
'Psoriasis': 39, 'Impetigo': 40
|
66 |
}
|
67 |
|
68 |
+
# Helper Functions for Chatbot
|
69 |
def bag_of_words(s, words):
|
70 |
"""Convert user input to bag-of-words vector."""
|
71 |
bag = [0] * len(words)
|
|
|
117 |
}
|
118 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def generate_suggestions(emotion):
|
121 |
"""Return relevant suggestions based on detected emotions."""
|
122 |
emotion_key = emotion.lower()
|
|
|
171 |
professionals = []
|
172 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
173 |
for place in places_result:
|
|
|
174 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
175 |
folium.Marker(
|
176 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
|
|
182 |
except Exception as e:
|
183 |
return [], "" # Return empty list on exception
|
184 |
|
185 |
+
# Main Application Logic for Chatbot
|
186 |
+
def app_function_chatbot(user_input, location, query, history):
|
187 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
188 |
sentiment_result = analyze_sentiment(user_input)
|
189 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
190 |
suggestions = generate_suggestions(cleaned_emotion)
|
191 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
192 |
+
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
|
193 |
+
|
194 |
+
# Load datasets for Disease Prediction
|
195 |
+
def load_data():
|
196 |
+
df = pd.read_csv("Training.csv")
|
197 |
+
tr = pd.read_csv("Testing.csv")
|
198 |
+
|
199 |
+
# Encode diseases
|
200 |
+
df.replace({'prognosis': disease_dict}, inplace=True)
|
201 |
+
df = df.infer_objects(copy=False)
|
202 |
+
tr.replace({'prognosis': disease_dict}, inplace=True)
|
203 |
+
tr = tr.infer_objects(copy=False)
|
204 |
+
|
205 |
+
return df, tr
|
206 |
+
|
207 |
+
df, tr = load_data()
|
208 |
+
l1 = list(df.columns[:-1])
|
209 |
+
X = df[l1]
|
210 |
+
y = df['prognosis']
|
211 |
+
X_test = tr[l1]
|
212 |
+
y_test = tr['prognosis']
|
213 |
+
|
214 |
+
# Trained models
|
215 |
+
def train_models():
|
216 |
+
models = {
|
217 |
+
"Decision Tree": DecisionTreeClassifier(),
|
218 |
+
"Random Forest": RandomForestClassifier(),
|
219 |
+
"Naive Bayes": GaussianNB()
|
220 |
+
}
|
221 |
+
trained_models = {}
|
222 |
+
for model_name, model_obj in models.items():
|
223 |
+
model_obj.fit(X, y)
|
224 |
+
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
225 |
+
trained_models[model_name] = (model_obj, acc)
|
226 |
+
return trained_models
|
227 |
+
|
228 |
+
trained_models = train_models()
|
229 |
+
|
230 |
+
def predict_disease(model, symptoms):
|
231 |
+
input_test = np.zeros(len(l1))
|
232 |
+
for symptom in symptoms:
|
233 |
+
if symptom in l1:
|
234 |
+
input_test[l1.index(symptom)] = 1
|
235 |
+
prediction = model.predict([input_test])[0]
|
236 |
+
return list(disease_dict.keys())[list(disease_dict.values()).index(prediction)]
|
237 |
+
|
238 |
+
# Disease Prediction Application Logic
|
239 |
+
def app_function_disease(name, symptom1, symptom2, symptom3, symptom4, symptom5):
|
240 |
+
if not name.strip():
|
241 |
+
return "Please enter the patient's name."
|
242 |
+
|
243 |
+
symptoms_selected = [s for s in [symptom1, symptom2, symptom3, symptom4, symptom5] if s != "None"]
|
244 |
+
|
245 |
+
if len(symptoms_selected) < 3:
|
246 |
+
return "Please select at least 3 symptoms for accurate prediction."
|
247 |
+
|
248 |
+
results = []
|
249 |
+
for model_name, (model, acc) in trained_models.items():
|
250 |
+
prediction = predict_disease(model, symptoms_selected)
|
251 |
+
result = f"{model_name} Prediction: Predicted Disease: **{prediction}**"
|
252 |
+
result += f" (Accuracy: {acc * 100:.2f}%)"
|
253 |
+
results.append(result)
|
254 |
+
|
255 |
+
return "\n\n".join(results)
|
256 |
|
257 |
+
# CSS Styling for the Gradio Interface
|
258 |
custom_css = """
|
259 |
body {
|
260 |
font-family: 'Roboto', sans-serif;
|
|
|
335 |
# Gradio Application
|
336 |
with gr.Blocks(css=custom_css) as app:
|
337 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
with gr.Tab("Mental Health Chatbot"):
|
340 |
+
with gr.Row():
|
341 |
+
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
342 |
+
location = gr.Textbox(label="Please Enter Your Current Location Here")
|
343 |
+
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
|
344 |
+
|
345 |
+
submit_chatbot = gr.Button(value="Submit Chatbot", variant="primary")
|
346 |
|
347 |
+
chatbot = gr.Chatbot(label="Chat History")
|
348 |
+
sentiment = gr.Textbox(label="Detected Sentiment")
|
349 |
+
emotion = gr.Textbox(label="Detected Emotion")
|
350 |
+
|
351 |
+
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
352 |
+
|
353 |
+
suggestions = gr.DataFrame(headers=["Title", "Link"])
|
354 |
+
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
|
355 |
+
map_html = gr.HTML(label="Interactive Map")
|
356 |
+
|
357 |
+
submit_chatbot.click(
|
358 |
+
app_function_chatbot,
|
359 |
+
inputs=[user_input, location, query, chatbot],
|
360 |
+
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html],
|
361 |
+
)
|
362 |
+
|
363 |
+
with gr.Tab("Disease Prediction"):
|
364 |
+
patient_name = gr.Textbox(label="Name of Patient")
|
365 |
+
symptom1 = gr.Dropdown(["None"] + l1, label="Symptom 1")
|
366 |
+
symptom2 = gr.Dropdown(["None"] + l1, label="Symptom 2")
|
367 |
+
symptom3 = gr.Dropdown(["None"] + l1, label="Symptom 3")
|
368 |
+
symptom4 = gr.Dropdown(["None"] + l1, label="Symptom 4")
|
369 |
+
symptom5 = gr.Dropdown(["None"] + l1, label="Symptom 5")
|
370 |
+
|
371 |
+
submit_disease = gr.Button(value="Submit Disease Prediction", variant="primary")
|
372 |
+
disease_prediction_result = gr.Textbox(label="Prediction")
|
373 |
+
|
374 |
+
submit_disease.click(
|
375 |
+
app_function_disease,
|
376 |
+
inputs=[patient_name, symptom1, symptom2, symptom3, symptom4, symptom5],
|
377 |
+
outputs=disease_prediction_result,
|
378 |
+
)
|
379 |
+
|
380 |
+
# Launch the Gradio application
|
381 |
+
app.launch()
|