Spaces:
Sleeping
Sleeping
File size: 14,634 Bytes
0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d 7684892 0aa146d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import streamlit as st
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import requests
import csv
import time
import re
from bs4 import BeautifulSoup
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Function for sentiment analysis
def analyze_sentiment(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = sentiment_model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return sentiment
# Function for emotion detection
def detect_emotion(text):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
result = pipe(text)
emotion = result[0]['label']
return emotion
# Function to scrape website URL from Google Maps using Selenium
def scrape_website_from_google_maps(place_name):
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
driver = webdriver.Chrome(options=chrome_options)
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
driver.get(search_url)
time.sleep(5)
try:
website_element = driver.find_element_by_xpath('//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
website_url = website_element.get_attribute('href')
except:
website_url = "Not available"
driver.quit()
return website_url
# Function to scrape website for contact information
def scrape_website_for_contact_info(website):
phone_number = "Not available"
email = "Not available"
try:
response = requests.get(website, timeout=5)
soup = BeautifulSoup(response.content, 'html.parser')
phone_match = re.search(r'$$?\+?[0-9]*$$?[0-9_\- $$$$]*', soup.get_text())
if phone_match:
phone_number = phone_match.group()
email_match = re.search(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', soup.get_text())
if email_match:
email = email_match.group()
except Exception as e:
print(f"Error scraping website {website}: {e}")
return phone_number, email
# Function to fetch detailed information for a specific place using its place_id
def get_place_details(place_id, api_key):
details_url = "https://maps.googleapis.com/maps/api/place/details/json"
params = {
"place_id": place_id,
"key": api_key
}
response = requests.get(details_url, params=params)
if response.status_code == 200:
details_data = response.json().get("result", {})
return {
"opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"),
"reviews": details_data.get("reviews", "Not available"),
"phone_number": details_data.get("formatted_phone_number", "Not available"),
"website": details_data.get("website", "Not available")
}
else:
return {}
# Function to get all places data including pagination
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query, location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
rating = place.get("rating", "Not available")
business_status = place.get("business_status", "Not available")
user_ratings_total = place.get("user_ratings_total", "Not available")
website = place.get("website", "Not available")
types = ", ".join(place.get("types", []))
location = place.get("geometry", {}).get("location", {})
latitude = location.get("lat", "Not available")
longitude = location.get("lng", "Not available")
details = get_place_details(place_id, api_key)
phone_number = details.get("phone_number", "Not available")
if phone_number == "Not available" and website != "Not available":
phone_number, email = scrape_website_for_contact_info(website)
else:
email = "Not available"
if website == "Not available":
website = scrape_website_from_google_maps(name)
all_results.append([name, address, phone_number, rating, business_status,
user_ratings_total, website, types, latitude, longitude,
details.get("opening_hours", "Not available"),
details.get("reviews", "Not available"), email
])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
time.sleep(2)
else:
break
return all_results
# Function to save results to CSV file
def save_to_csv(data, filename):
with open(filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([
"Name", "Address", "Phone", "Rating", "Business Status",
"User Ratings Total", "Website", "Types", "Latitude", "Longitude",
"Opening Hours", "Reviews", "Email"
])
writer.writerows(data)
print(f"Data saved to {filename}")
# Function to get places data from Google Places API
def get_places_data(query, location, radius, api_key, next_page_token=None):
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
return data
else:
print(f"Error: {response.status_code} - {response.text}")
return None
# Set page config
st.set_page_config(page_title="Wellbeing Support System", layout="wide")
# Display header
st.title("Wellbeing Support System")
# User input for location
location = st.text_input("Enter your location:", "Hawaii")
# Tabs for different functionalities
tabs = ["Chatbot", "Sentiment Analysis", "Emotion Detection & Suggestions", "Find Local Wellness Professionals"]
selected_tab = st.selectbox("Select a functionality:", tabs)
if selected_tab == "Chatbot":
# Chatbot functionality
st.subheader("Chat with the Mental Health Support Bot")
chatbot = gr.Chatbot(label="Chat")
demo = gr.Interface(
chat,
[gr.Textbox(lines=1, label="Message"), "state"],
[chatbot, "state"],
allow_flagging="never",
title="Wellbeing for All, ** I am your Best Friend **",
)
demo.launch()
elif selected_tab == "Sentiment Analysis":
# Sentiment Analysis
st.subheader("Sentiment Analysis")
user_input = st.text_area("Enter text to analyze sentiment:")
if st.button("Analyze Sentiment"):
if user_input:
sentiment = analyze_sentiment(user_input)
st.write(f"**Sentiment:** {sentiment}")
else:
st.warning("Please enter some text to analyze.")
elif selected_tab == "Emotion Detection & Suggestions":
# Emotion Detection and Suggestions
st.subheader("Emotion Detection and Well-Being Suggestions")
user_input = st.text_area("How are you feeling today?", "Enter your thoughts here...")
if st.button("Detect Emotion"):
if user_input:
emotion = detect_emotion(user_input)
st.write(f"**Emotion Detected:** {emotion}")
# Provide suggestions based on the detected emotion
if emotion == 'joy':
st.write("You're feeling happy! Keep up the great mood!")
st.write("Useful Resources:")
st.markdown("[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
st.write("[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")
elif emotion == 'anger':
st.write("You're feeling angry. It's okay to feel this way. Let's try to calm down.")
st.write("Useful Resources:")
st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)")
st.write("[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/MIc299Flibs)")
# Add more conditions for other emotions...
else:
st.warning("Please enter some text to analyze.")
elif selected_tab == "Find Local Wellness Professionals":
# Find Local Wellness Professionals
st.subheader("Find Local Wellness Professionals")
if st.button("Search"):
# Define search parameters
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath in " + location
api_key = "AIzaSyCcfJzMFfuv_1LN7JPTJJYw_aS0A_SLeW0" # Replace with your own Google API key
location_coords = "21.3,-157.8" # Default to Oahu, Hawaii
radius = 50000 # 50 km radius
# Install Chrome and Chromedriver
def install_chrome_and_driver():
os.system("apt-get update")
os.system("apt-get install -y wget curl")
os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb")
os.system("dpkg -i google-chrome-stable_current_amd64.deb")
os.system("apt-get install -y -f")
os.system("google-chrome-stable --version")
chromedriver_autoinstaller.install()
install_chrome_and_driver()
# Get all places data
google_places_data = get_all_places(query, location_coords, radius, api_key)
if google_places_data:
# Display the results
df = pd.DataFrame(google_places_data, columns=[
"Name", "Address", "Phone", "Rating", "Business Status",
"User Ratings Total", "Website", "Types", "Latitude", "Longitude",
"Opening Hours", "Reviews", "Email"
])
st.write(df)
# Save to CSV
save_to_csv(google_places_data, "wellness_professionals.csv")
else:
st.write("No data found.") |