File size: 9,258 Bytes
d3aead7
7684892
 
 
 
 
 
48a4b0f
7684892
 
48a4b0f
7684892
 
 
48a4b0f
7684892
 
 
 
 
d3aead7
7684892
 
 
 
 
 
 
 
48a4b0f
 
7684892
48a4b0f
7684892
 
 
48a4b0f
 
7684892
48a4b0f
7684892
 
 
 
 
 
 
 
 
 
 
48a4b0f
7684892
48a4b0f
7684892
 
 
48a4b0f
 
 
 
 
 
 
 
7684892
 
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7684892
0aa146d
 
 
 
48a4b0f
 
 
 
 
 
 
 
 
 
 
d3aead7
48a4b0f
0aa146d
 
 
 
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
d3aead7
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa146d
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3aead7
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import re
from bs4 import BeautifulSoup
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function
def chat(message, history, state):
    history = history or []
    message = message.lower()
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]
        
        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"

        history.append((message, response))

        # Update state to move to the next feature
        state['step'] = 2  # Move to sentiment analysis
    except Exception as e:
        response = f"An error occurred: {str(e)}"

    return history, history, state

# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

# Function for sentiment analysis
def analyze_sentiment(text, state):
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = sentiment_model(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
    
    # Update state to move to the next feature
    state['step'] = 3  # Move to emotion detection and suggestions
    return sentiment, state

# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Function for emotion detection
def detect_emotion(text, state):
    pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
    result = pipe(text)
    emotion = result[0]['label']

    # Provide suggestions based on emotion
    suggestions = provide_suggestions(emotion)
    
    # Update state to move to the next feature
    state['step'] = 4  # Move to wellness professional search
    return emotion, suggestions, state

# Suggestions based on detected emotion
def provide_suggestions(emotion):
    if emotion == 'joy':
        return "You're feeling happy! Keep up the great mood!"
    elif emotion == 'anger':
        return "You're feeling angry. It's okay to feel this way. Let's try to calm down."
    elif emotion == 'fear':
        return "You're feeling fearful. Take deep breaths, everything will be okay."
    elif emotion == 'sadness':
        return "You're feeling sad. It's okay, things will get better. You're not alone."
    else:
        return "Sorry, no suggestions available for this emotion."

# Function to find wellness professionals
def find_wellness_professionals(location, state):
    query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist in " + location
    api_key = "YOUR_GOOGLE_API_KEY"  # Replace with your own API key
    location_coords = "21.3,-157.8"  # Default to Oahu, Hawaii
    radius = 50000  # 50 km radius
    
    google_places_data = get_all_places(query, location_coords, radius, api_key)
    if google_places_data:
        df = pd.DataFrame(google_places_data, columns=[
            "Name", "Address", "Phone", "Rating", "Business Status",
            "User Ratings Total", "Website", "Types", "Latitude", "Longitude",
            "Opening Hours", "Reviews", "Email"
        ])
        return df, state
    else:
        return pd.DataFrame(), state

# The functions for scraping websites and fetching details
def get_all_places(query, location, radius, api_key):
    all_results = []
    next_page_token = None
    while True:
        data = get_places_data(query, location, radius, api_key, next_page_token)
        if data:
            results = data.get('results', [])
            for place in results:
                place_id = place.get("place_id")
                name = place.get("name")
                address = place.get("formatted_address")
                rating = place.get("rating", "Not available")
                business_status = place.get("business_status", "Not available")
                user_ratings_total = place.get("user_ratings_total", "Not available")
                website = place.get("website", "Not available")
                types = ", ".join(place.get("types", []))
                location = place.get("geometry", {}).get("location", {})
                latitude = location.get("lat", "Not available")
                longitude = location.get("lng", "Not available")
                details = get_place_details(place_id, api_key)
                phone_number = details.get("phone_number", "Not available")
                email = details.get("email", "Not available")
                all_results.append([name, address, phone_number, rating, business_status,
                                    user_ratings_total, website, types, latitude, longitude,
                                    details.get("opening_hours", "Not available"),
                                    details.get("reviews", "Not available"), email])
            next_page_token = data.get('next_page_token')
            if not next_page_token:
                break
        time.sleep(2)
    return all_results

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Wellbeing Support System")
    
    state = gr.State({"step": 1})  # Track the flow step

    with gr.Tab("Chatbot"):
        chatbot = gr.Chatbot()
        msg = gr.Textbox()
        clear = gr.Button("Clear")
        msg.submit(chat, inputs=[msg, chatbot, state], outputs=[chatbot, chatbot, state])
        clear.click(lambda: None, None, chatbot)

    with gr.Tab("Sentiment Analysis"):
        sentiment_output = gr.Textbox(label="Sentiment:")
        text_input = gr.Textbox(label="Enter text to analyze sentiment:")
        analyze_button = gr.Button("Analyze Sentiment")
        analyze_button.click(analyze_sentiment, inputs=[text_input, state], outputs=[sentiment_output, state])

    with gr.Tab("Emotion Detection & Suggestions"):
        emotion_input = gr.Textbox(label="How are you feeling today?", value="Enter your thoughts here...")
        detect_button = gr.Button("Detect Emotion")
        emotion_output = gr.Textbox(label="Detected Emotion:")
        suggestions_output = gr.Textbox(label="Suggestions:")
        detect_button.click(detect_emotion, inputs=[emotion_input, state], outputs=[emotion_output, suggestions_output, state])

    with gr.Tab("Find Local Wellness Professionals"):
        location_input = gr.Textbox(label="Enter your location:", value="Hawaii")
        search_button = gr.Button("Search")
        results_output = gr.Dataframe(label="Search Results")
        search_button.click(find_wellness_professionals, inputs=[location_input, state], outputs=[results_output, state])

demo.launch()