Spaces:
Sleeping
Sleeping
File size: 12,716 Bytes
d3aead7 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 d3aead7 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f 7684892 48a4b0f ae282f5 48a4b0f ae282f5 48a4b0f 7684892 0aa146d 48a4b0f ae282f5 48a4b0f ae282f5 d3aead7 48a4b0f 0aa146d ae282f5 48a4b0f ae282f5 48a4b0f ae282f5 48a4b0f d3aead7 ae282f5 48a4b0f ae282f5 48a4b0f ae282f5 48a4b0f ae282f5 0aa146d ae282f5 48a4b0f ae282f5 48a4b0f ae282f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import re
from bs4 import BeautifulSoup
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history, state):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
# Add emoticons to the response
emoticon_dict = {
"joy": "π",
"anger": "π‘",
"fear": "π¨",
"sadness": "π",
"surprise": "π²",
"neutral": "π"
}
# Add the emotion-related emoticon to the response
for tg in data["intents"]:
if tg['tag'] == tag:
emotion = tg.get('emotion', 'neutral') # Default to neutral if no emotion is defined
response = f"{response} {emoticon_dict.get(emotion, 'π')}"
break
history.append((message, response))
# Transition to the next feature (sentiment analysis)
state['step'] = 2 # Move to sentiment analysis
except Exception as e:
response = f"An error occurred: {str(e)}"
return history, history, state
# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Function for sentiment analysis
def analyze_sentiment(text, state):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = sentiment_model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
# Add emoticon to sentiment
sentiment_emojis = {
"Negative": "π",
"Neutral": "π",
"Positive": "π"
}
sentiment_with_emoji = f"{sentiment} {sentiment_emojis.get(sentiment, 'π')}"
# Transition to emotion detection
state['step'] = 3 # Move to emotion detection and suggestions
return sentiment_with_emoji, state
# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Function for emotion detection and suggestions
def detect_emotion(text, state):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
result = pipe(text)
emotion = result[0]['label']
# Provide suggestions based on detected emotion
suggestions = provide_suggestions(emotion)
# Transition to wellness professional search
state['step'] = 4 # Move to wellness professional search
return emotion, suggestions, state
# Suggestions based on detected emotion
def provide_suggestions(emotion):
resources = {
'joy': {
'message': "You're feeling happy! Keep up the great mood! π",
'articles': [
"[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
"[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Relaxation Video](https://youtu.be/m1vaUGtyo-A)"
},
'anger': {
'message': "You're feeling angry. It's okay to feel this way. Let's try to calm down. π‘",
'articles': [
"[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
"[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)"
],
'videos': "[Watch Anger Management Video](https://youtu.be/MIc299Flibs)"
},
'fear': {
'message': "You're feeling fearful. Take a moment to breathe and relax. π¨",
'articles': [
"[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
"[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Coping Video](https://youtu.be/yGKKz185M5o)"
},
'sadness': {
'message': "You're feeling sad. It's okay to take a break. π",
'articles': [
"[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
"[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Sadness Relief Video](https://youtu.be/-e-4Kx5px_I)"
},
'surprise': {
'message': "You're feeling surprised. It's okay to feel neutral! π²",
'articles': [
"[Managing Stress](https://www.health.harvard.edu/health-a-to-z)",
"[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
}
}
return resources.get(emotion, {'message': "Stay calm. π", 'articles': [], 'videos': []})
# Function to find wellness professionals
def find_wellness_professionals(location, state):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist in " + location
api_key = "YOUR_GOOGLE_API_KEY" # Replace with your own API key
location_coords = "21.3,-157.8" # Default to Oahu, Hawaii
radius = 50000 # 50 km radius
google_places_data = get_all_places(query, location_coords, radius, api_key)
if google_places_data:
df = pd.DataFrame(google_places_data, columns=[
"Name", "Address", "Phone", "Rating", "Business Status",
"User Ratings Total", "Website", "Types", "Latitude", "Longitude",
"Opening Hours", "Reviews", "Email"
])
# Display results in Gradio interface
if not df.empty:
df_html = df.to_html(classes="table table-striped", index=False)
return f"Found wellness professionals in your area: \n{df_html}", state
else:
return "No wellness professionals found for your location. Try another search.", state
else:
return "Sorry, there was an issue fetching data. Please try again later.", state
# Function to fetch places data using Google Places API
def get_all_places(query, location, radius, api_key):
url = f"https://maps.googleapis.com/maps/api/place/textsearch/json?query={query}&location={location}&radius={radius}&key={api_key}"
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("results", [])
places = []
for place in results:
name = place.get("name")
address = place.get("formatted_address")
phone = place.get("formatted_phone_number", "Not available")
rating = place.get("rating", "Not rated")
business_status = place.get("business_status", "N/A")
user_ratings_total = place.get("user_ratings_total", "N/A")
website = place.get("website", "Not available")
types = place.get("types", [])
lat, lng = place.get("geometry", {}).get("location", {}).values()
opening_hours = place.get("opening_hours", {}).get("weekday_text", [])
reviews = place.get("reviews", [])
email = "Not available" # Assume email is not included in the API response
# Adding the place data to the list
places.append([name, address, phone, rating, business_status, user_ratings_total,
website, types, lat, lng, opening_hours, reviews, email])
return places
else:
return []
# Gradio interface setup
def gradio_interface():
with gr.Blocks() as demo:
# Set title and description
gr.Markdown("<h1 style='text-align: center;'>Mental Health Support Chatbot π€</h1>")
gr.Markdown("<p style='text-align: center;'>Get emotional well-being suggestions and find wellness professionals nearby.</p>")
# State to manage step transitions
state = gr.State({"step": 1})
# Chat interface
with gr.Row():
chatbot = gr.Chatbot(label="Chatbot")
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
send_button = gr.Button("Send")
# Output for emotion, sentiment, suggestions
with gr.Row():
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detection")
suggestions_output = gr.Textbox(label="Suggestions")
# Input for location for wellness professionals
with gr.Row():
location_input = gr.Textbox(label="Your Location (City/Region)", placeholder="Enter your city...")
search_button = gr.Button("Search Wellness Professionals")
# Button actions
send_button.click(chat, inputs=[user_input, chatbot, state], outputs=[chatbot, chatbot, state])
user_input.submit(chat, inputs=[user_input, chatbot, state], outputs=[chatbot, chatbot, state])
send_button.click(analyze_sentiment, inputs=[user_input, state], outputs=[sentiment_output, state])
user_input.submit(analyze_sentiment, inputs=[user_input, state], outputs=[sentiment_output, state])
send_button.click(detect_emotion, inputs=[user_input, state], outputs=[emotion_output, suggestions_output, state])
user_input.submit(detect_emotion, inputs=[user_input, state], outputs=[emotion_output, suggestions_output, state])
search_button.click(find_wellness_professionals, inputs=[location_input, state], outputs=[suggestions_output, state])
demo.launch()
# Run the Gradio interface
if __name__ == "__main__":
gradio_interface()
|