Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
import requests | |
import csv | |
import time | |
import re | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
import chromedriver_autoinstaller | |
import os | |
import nltk | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import tflearn | |
import tensorflow as tf | |
import json | |
import pickle | |
# Ensure necessary NLTK resources are downloaded | |
nltk.download('punkt') | |
# Import LancasterStemmer from nltk.stem | |
from nltk.stem import LancasterStemmer | |
# Initialize the stemmer | |
stemmer = LancasterStemmer() | |
# Load intents.json | |
try: | |
with open("intents.json") as file: | |
data = json.load(file) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") | |
# Load preprocessed data from pickle | |
try: | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") | |
# Define a PyTorch model with the same architecture as your tflearn model | |
class PyTorchModel(nn.Module): | |
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_classes): | |
super(PyTorchModel, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, embedding_dim) | |
self.fc1 = nn.Linear(embedding_dim, hidden_dim) | |
self.relu = nn.ReLU() | |
self.fc2 = nn.Linear(hidden_dim, num_classes) | |
def forward(self, x): | |
out = self.embedding(x) | |
out = torch.mean(out, dim=1) | |
out = self.fc1(out) | |
out = self.relu(out) | |
out = self.fc2(out) | |
return out | |
# Convert the tflearn model to a PyTorch model | |
vocab_size = len(words) | |
embedding_dim = 128 | |
hidden_dim = 64 | |
num_classes = len(labels) | |
# Load the TensorFlow model | |
model_tf = tflearn.DNN(tflearn.input_data(shape=[None, len(training[0])])) | |
model_tf.load("MentalHealthChatBotmodel.tflearn") | |
# Convert the TensorFlow model to a PyTorch model | |
pytorch_model = PyTorchModel(vocab_size, embedding_dim, hidden_dim, num_classes) | |
# Load weights from the TensorFlow model | |
layer_names = ['fc1/kernel', 'fc1/bias', 'fc2/kernel', 'fc2/bias'] | |
for layer_name in layer_names: | |
weight_tensor = getattr(model_tf, layer_name) | |
pytorch_layer_name = layer_name.replace('/', '_') | |
pytorch_model.state_dict()[pytorch_layer_name].copy_(torch.tensor(weight_tensor.eval(session=model_tf.trainer.session))) | |
# Move the model to the CPU | |
pytorch_model.cpu() | |
# Load tokenizer and model for sentiment analysis | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
# Google Places API endpoint | |
url = "https://maps.googleapis.com/maps/api/place/textsearch/json" | |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json" | |
# Google Geocoding API endpoint | |
geocoding_url = "https://maps.googleapis.com/maps/api/geocode/json" | |
# Your actual Google API Key (replace with your key) | |
api_key = "AIzaSyCcfJzMFfuv_1LN7JPTJJYw_aS0A_SLeW0" # Replace with your own Google API key | |
# Search query for wellness professionals in Hawaii | |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath in Hawaii" | |
# Function to send a request to Google Places API and fetch places data | |
def get_places_data(query, location, radius, api_key, next_page_token=None): | |
params = { | |
"query": query, | |
"location": location, | |
"radius": radius, | |
"key": api_key | |
} | |
if next_page_token: | |
params["pagetoken"] = next_page_token | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return None | |
# Function to fetch detailed information for a specific place using its place_id | |
def get_place_details(place_id, api_key): | |
details_url = places_details_url | |
params = { | |
"place_id": place_id, | |
"key": api_key | |
} | |
response = requests.get(details_url, params=params) | |
if response.status_code == 200: | |
details_data = response.json().get("result", {}) | |
return { | |
"opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"), | |
"reviews": details_data.get("reviews", "Not available"), | |
"phone_number": details_data.get("formatted_phone_number", "Not available"), | |
"website": details_data.get("website", "Not available") | |
} | |
else: | |
return {} | |
# Function to fetch all places data including pagination | |
def get_all_places(query, location, radius, api_key): | |
all_results = [] | |
next_page_token = None | |
while True: | |
data = get_places_data(query, location, radius, api_key, next_page_token) | |
if data: | |
results = data.get('results', []) | |
if not results: | |
break | |
for place in results: | |
place_id = place.get("place_id") | |
name = place.get("name") | |
address = place.get("formatted_address") | |
rating = place.get("rating", "Not available") | |
business_status = place.get("business_status", "Not available") | |
user_reviews_total = place.get("user_reviews_total", "Not available") | |
website = place.get("website", "Not available") | |
types = ", ".join(place.get("types", [])) | |
location = place.get("geometry", {}).get("location", {}) | |
latitude = location.get("lat", "Not available") | |
longitude = location.get("lng", "Not available") | |
details = get_place_details(place_id, api_key) | |
phone_number = details.get("phone_number", "Not available") | |
if phone_number == "Not available" and website != "Not available": | |
phone_number, email = scrape_div_for_contact_info(website) | |
else: | |
email = "Not available" | |
if website == "Not available": | |
website = scrape_div_from_google_maps(name) | |
all_results.append([name, address, phone_number, rating, business_status, | |
user_reviews_total, website, types, latitude, longitude, | |
details.get("opening_hours", "Not available"), | |
details.get("reviews", "Not available"), email]) | |
next_page_token = data.get('next_page_token') | |
if not next_page_token: | |
break | |
time.sleep(2) | |
else: | |
break | |
return all_results | |
# Function to save results to CSV file | |
def save_to_csv(data, filename): | |
with open(filename, mode='w', newline='', encoding='utf-8') as file: | |
writer = csv.writer(file) | |
writer.writerow([ | |
"Name", "Address", "Phone", "Rating", "Business Status", | |
"User Reviews Total", "Website", "Types", "Latitude", "Longitude", | |
"Opening Hours", "Reviews", "Email" | |
]) | |
writer.writerows(data) | |
print(f"Data saved to {filename}") | |
# Geocoding function to convert location text to coordinates | |
def geocode_location(address): | |
params = { | |
"address": address, | |
"key": api_key | |
} | |
response = requests.get(geocoding_url, params=params) | |
if response.status_code == 200: | |
data = response.json() | |
if data['status'] == 'OK': | |
location = data['results'][0]['geometry']['location'] | |
return location['lat'], location['lng'] | |
else: | |
raise ValueError("Geocoding failed.") | |
else: | |
raise ValueError("Failed to retrieve geocoding data.") | |
# Main function to execute script | |
def main(): | |
google_places_data = get_all_places(query, location, radius, api_key) | |
if google_places_data: | |
save_to_csv(google_places_data, "wellness_professionals_hawaii.csv") | |
else: | |
print("No data found.") | |
# Gradio UI setup | |
with gr.Blocks() as demo: | |
# Display header | |
gr.Markdown("# Emotion Detection and Well-Being Suggestions") | |
# User input for text (emotion detection) | |
user_input_emotion = gr.Textbox(lines=1, label="How are you feeling today?") | |
submit_emotion = gr.Button("Submit") | |
# Model prediction for emotion detection | |
def predict_emotion(text): | |
inputs = tokenizer_sentiment(text, return_tensors="pt").to('cpu') | |
with torch.no_grad(): | |
outputs = pytorch_model(inputs['input_ids']) | |
_, predicted_class = torch.max(outputs, dim=1) | |
emotion = labels[predicted_class.item()] | |
return emotion | |
# Show suggestions based on the detected emotion | |
def show_suggestions(emotion): | |
if emotion == 'joy': | |
return "You're feeling happy! Keep up the great mood!\nUseful Resources:\n[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)" | |
elif emotion == 'anger': | |
return "You're feeling angry. It's okay to feel this way. Let's try to calm down.\nUseful Resources:\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)\n[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/MIc299Flibs)" | |
elif emotion == 'fear': | |
return "You're feeling fearful. Take a moment to breathe and relax.\nUseful Resources:\n[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/yGKKz185M5o)" | |
elif emotion == 'sadness': | |
return "You're feeling sad. It's okay to take a break.\nUseful Resources:\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)" | |
elif emotion == 'surprise': | |
return "You're feeling surprised. It's okay to feel neutral!\nUseful Resources:\n[Managing Stress](https://www.health.harvard.edu/health-a-to-z)\n[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)" | |
emotion_output = gr.Textbox(label="Emotion Detected") | |
submit_emotion.click(predict_emotion, inputs=user_input_emotion, outputs=emotion_output) | |
# Button for summary | |
def show_summary(emotion): | |
return f"Emotion Detected: {emotion}\nUseful Resources based on your mood:\n{show_suggestions(emotion)}" | |
summary_button = gr.Button("Show Summary") | |
summary_output = gr.Textbox(label="Summary") | |
summary_button.click(show_summary, inputs=emotion_output, outputs=summary_output) | |
# Chatbot functionality | |
chatbot = gr.Chatbot(label="Chat") | |
message_input = gr.Textbox(lines=1, label="Message") | |
submit_chat = gr.Button("Send") | |
def chat(message, history): | |
history = history or [] | |
message = message.lower() | |
try: | |
# Predict the tag | |
results = model.predict([bag_of_words(message, words)]) | |
results_index = np.argmax(results) | |
tag = labels[results_index] | |
# Match tag with intent and choose a random response | |
for tg in data["intents"]: | |
if tg['tag'] == tag: | |
responses = tg['responses'] | |
response = random.choice(responses) | |
break | |
else: | |
response = "I'm sorry, I didn't understand that. Could you please rephrase?" | |
except Exception as e: | |
response = f"An error occurred: {str(e)}" | |
history.append((message, response)) | |
return history, history | |
submit_chat.click(chat, inputs=[message_input, gr.State()], outputs=[chatbot, gr.State()]) | |
# Location input for fetching nearby health professionals | |
location_input = gr.Textbox(lines=1, label="Enter your location (plain English):") | |
submit_location = gr.Button("Find Nearby Health Professionals") | |
# Fetch and display nearby health professionals | |
def fetch_nearby_health_professionals(location): | |
try: | |
lat, lon = geocode_location(location) | |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" | |
radius = 50000 # 50 km radius | |
all_results = get_all_places(query, f"{lat},{lon}", radius, api_key) | |
if all_results: | |
df = pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
return df | |
else: | |
return "No data found." | |
except Exception as e: | |
return str(e) | |
nearby_health_professionals_table = gr.Dataframe(headers=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
submit_location.click(fetch_nearby_health_professionals, inputs=location_input, outputs=nearby_health_professionals_table) | |
# User input for text (sentiment analysis) | |
user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:") | |
submit_sentiment = gr.Button("Submit") | |
# Prediction button for sentiment analysis | |
def predict_sentiment(text): | |
inputs = tokenizer_sentiment(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] | |
return sentiment | |
sentiment_output = gr.Textbox(label="Predicted Sentiment") | |
submit_sentiment.click(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output) | |
# Button to fetch wellness professionals data | |
fetch_button = gr.Button("Fetch Wellness professionals data") | |
data_output = gr.Dataframe(headers=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
def fetch_data(): | |
all_results = get_all_places(query, location, radius, api_key) | |
if all_results: | |
return pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
else: | |
return "No data found." | |
fetch_button.click(fetch_data, inputs=None, outputs=data_output) | |
# Launch Gradio interface | |
demo.launch() |