Testing / app.py
DreamStream-1's picture
Update app.py
1aa6549 verified
raw
history blame
9.15 kB
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import pandas as pd
import tempfile
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function (Chatbot)
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment Analysis
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return f"**Predicted Sentiment:** {sentiment}"
# Emotion Detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
def detect_emotion(user_input):
result = pipe(user_input)
emotion = result[0]['label']
return emotion
def provide_suggestions(emotion):
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
if emotion == 'joy':
suggestions = suggestions.append({
"Subject": "Relaxation Techniques",
"Article URL": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation",
"Video URL": "https://youtu.be/m1vaUGtyo-A"
}, ignore_index=True)
suggestions = suggestions.append({
"Subject": "Dealing with Stress",
"Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"Video URL": "https://youtu.be/MIc299Flibs"
}, ignore_index=True)
elif emotion == 'anger':
suggestions = suggestions.append({
"Subject": "Managing Anger",
"Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"Video URL": "https://youtu.be/MIc299Flibs"
}, ignore_index=True)
elif emotion == 'fear':
suggestions = suggestions.append({
"Subject": "Coping with Anxiety",
"Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"Video URL": "https://youtu.be/yGKKz185M5o"
}, ignore_index=True)
elif emotion == 'sadness':
suggestions = suggestions.append({
"Subject": "Dealing with Sadness",
"Article URL": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety",
"Video URL": "https://youtu.be/-e-4Kx5px_I"
}, ignore_index=True)
elif emotion == 'surprise':
suggestions = suggestions.append({
"Subject": "Managing Stress",
"Article URL": "https://www.health.harvard.edu/health-a-to-z",
"Video URL": "https://youtu.be/m1vaUGtyo-A"
}, ignore_index=True)
return suggestions
# Google Places API to get nearby wellness professionals
api_key = "YOUR_GOOGLE_API_KEY" # Replace with your API key
def get_places_data(query, location, radius, api_key, next_page_token=None):
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
return response.json() if response.status_code == 200 else None
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query, location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
website = place.get("website", "Not available")
all_results.append([name, address, website])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
else:
break
return all_results
def search_wellness_professionals(location):
query = "therapist OR counselor OR mental health professional"
radius = 50000
google_places_data = get_all_places(query, location, radius, api_key)
if google_places_data:
df = pd.DataFrame(google_places_data, columns=["Name", "Address", "Website"])
return df
else:
return pd.DataFrame([["No data found.", "", ""]], columns=["Name", "Address", "Website"])
# Gradio Interface
def gradio_interface(message, location, state):
history = state or [] # If state is None, initialize it as an empty list
# Stage 1: Mental Health Chatbot
history, _ = chat(message, history)
# Stage 2: Sentiment Analysis
sentiment = analyze_sentiment(message)
# Stage 3: Emotion Detection and Suggestions
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
# Stage 4: Search for Wellness Professionals
wellness_results = search_wellness_professionals(location)
# Return the 6 values required by Gradio
return history, sentiment, emotion, suggestions, wellness_results, history # Last 'history' is for state
# Gradio interface setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
gr.Textbox(label="Enter your location (e.g., Hawaii, Oahu)", placeholder="Your location"),
gr.State() # One state input
],
outputs=[
gr.Chatbot(label="Chat History"),
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Detected Emotion"),
gr.Dataframe(label="Suggestions & Resources"),
gr.File(label="Download Wellness Professionals CSV"),
gr.State() # One state output
],
allow_flagging="never",
title="Mental Wellbeing App with AI Assistance",
description="This app provides a mental health chatbot, sentiment analysis, emotion detection, and wellness professional search functionality.",
)
# Launch Gradio interface
if __name__ == "__main__":
iface.launch(debug=True, share=True) # Set share=True to create a public link