Testing / app.py
DreamStream-1's picture
Update app.py
1e5e00a verified
raw
history blame
8.45 kB
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import requests
import pandas as pd
import time
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
import io
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function (Chatbot)
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment Analysis (Code 2)
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return f"**Predicted Sentiment:** {sentiment}"
# Emotion Detection (Code 3)
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
def detect_emotion(user_input):
result = pipe(user_input)
emotion = result[0]['label']
return emotion
def provide_suggestions(emotion):
suggestions = ""
if emotion == 'joy':
suggestions += "You're feeling happy! Keep up the great mood!"
elif emotion == 'anger':
suggestions += "You're feeling angry. It's okay to feel this way."
elif emotion == 'fear':
suggestions += "You're feeling fearful. Take a moment to breathe."
elif emotion == 'sadness':
suggestions += "You're feeling sad. It's okay to take a break."
elif emotion == 'surprise':
suggestions += "You're feeling surprised. It's okay to feel neutral!"
return suggestions
# Google Places API (Code 4)
api_key = "YOUR_GOOGLE_API_KEY" # Replace with your API key
def get_places_data(query, location, radius, api_key, next_page_token=None):
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
return response.json() if response.status_code == 200 else None
def get_all_places(query, location, radius, api_key):
all_results = []
next_page_token = None
while True:
data = get_places_data(query, location, radius, api_key, next_page_token)
if data:
results = data.get('results', [])
for place in results:
place_id = place.get("place_id")
name = place.get("name")
address = place.get("formatted_address")
website = place.get("website", "Not available")
all_results.append([name, address, website])
next_page_token = data.get('next_page_token')
if not next_page_token:
break
else:
break
return all_results
# Search Wellness Professionals
def search_wellness_professionals(location):
query = "therapist OR counselor OR mental health professional"
radius = 50000
google_places_data = get_all_places(query, location, radius, api_key)
# Check if data is found
if google_places_data:
df = pd.DataFrame(google_places_data, columns=["Name", "Address", "Website"])
# Create a CSV in memory
csv_file = io.StringIO()
df.to_csv(csv_file, index=False)
csv_file.seek(0) # Reset the pointer to the beginning of the file
return csv_file # Return the file-like object
else:
# If no data found, return a dummy CSV with a message
dummy_df = pd.DataFrame([["No data found.", "", ""]], columns=["Name", "Address", "Website"])
csv_file = io.StringIO()
dummy_df.to_csv(csv_file, index=False)
csv_file.seek(0)
return csv_file # Return the dummy file
# Gradio Interface
def gradio_interface(message, location, state):
history = state or [] # If state is None, initialize it as an empty list
# Stage 1: Mental Health Chatbot
history, _ = chat(message, history)
# Stage 2: Sentiment Analysis
sentiment = analyze_sentiment(message)
# Stage 3: Emotion Detection and Suggestions
emotion = detect_emotion(message)
suggestions = provide_suggestions(emotion)
# Stage 4: Search for Wellness Professionals
wellness_results = search_wellness_professionals(location)
# Return the 6 values required by Gradio
return history, sentiment, emotion, suggestions, wellness_results, history # Last 'history' is for state
# Gradio interface setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
gr.Textbox(label="Enter your location (e.g., Hawaii, Oahu)", placeholder="Your location"),
gr.State() # One state input
],
outputs=[
gr.Chatbot(label="Chat History"),
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Detected Emotion"),
gr.Textbox(label="Suggestions"),
gr.File(label="Download Wellness Professionals CSV"),
gr.State() # One state output
],
allow_flagging="never",
title="Mental Wellbeing App with AI Assistance",
description="This app provides a mental health chatbot, sentiment analysis, emotion detection, and wellness professional search functionality.",
)
# Launch Gradio interface
if __name__ == "__main__":
iface.launch(debug=True, share=True) # Set share=True to create a public link